Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(n^2-n+2=a^2\left(a\in N\right)\)
\(\Rightarrow4n^2-4n+8=\left(2a\right)^2\)
\(\Rightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)
\(\Rightarrow7=\left(2a-2n+1\right)\left(2a+2n-1\right)\)
Vì \(2a+2n-1>2a-2n+1;2a+2n-1>0\) (vì n thuộc N*)
\(\Rightarrow\hept{\begin{cases}2a+2n-1=7\\2a-2n+1=1\end{cases}\Rightarrow4n-2=6\Rightarrow}n=2\)
Vậy n=2 thì ...
Lời giải:
Đặt $n^4+4n^2-1=a^2$ với $a$ là số tự nhiên
$\Leftrightarrow (n^2+2)^2-5=a^2$
$\Leftrightarrow 5=(n^2+2)^2-a^2=(n^2+2-a)(n^2+2+a)$
Do $n^2+2+a\geq n^2+2-a$ với $a\geq 0$ và $n^2+2+a>0$ nên:
$n^2+2+a=5$ và $n^2+2-a=1$
$\Rightarrow 2(n^2+2)=6\Rightarrow n^2+2=3$
$\Leftrightarrow n^2=1$
$\Rightarrow n=\pm 1$
6853 + 3153 = ( 685 + 315 ) . ( 8652 + 685 . 315 + 3152 ) = 1 000.
Vì các số hạng trong ngoặc đều chia hết cho 25 nên 8653 + 3153 chia hết cho 25 000.
\(B=x^2-x+13\)là số chính phương \(\Leftrightarrow4B=4x^2-4x+52\)là số chính phương.
\(4x^2-4x+52=n^2\)
\(\Leftrightarrow\left(2x-1\right)^2+51=n^2\)
\(\Leftrightarrow\left(n-2x+1\right)\left(n+2x-1\right)=51=1.51=3.17\)
Ta có bảng giá trị:
n-2x+1 | 1 | 3 | 17 | 51 |
n+2x-1 | 51 | 17 | 3 | 1 |
n | 26 | 10 | 10 | 26 |
x | 13 | 4 | -3 | -12 |
Vậy \(x\in\left\{-12,-3,4,13\right\}\)thỏa mãn ycbt.
xét mọi số chính phương đều có thể viết dưới dạng :
\(\left(a\cdot n+b\right)^2\) với mọi số \(a,b\) là các số tự nhiên và b nhở hơn n
mà ta có :
\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)
vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2
vậy n=2
Đặt \(n^2+2n+12=a^2\)
\(\Rightarrow\left(n^2+2n+1\right)+11=a^2\)
\(\Rightarrow\left(n+1\right)^2-a^2=-11\)
\(\Rightarrow\left(n+1-a\right)\left(n+1+a\right)=-11\)
Đến đây bạn xét ước của 11 nên tìm ra n dễ dàng.
P/S:Câu b tương tự.
a, Đặt \(n^2+2n+12=k^2\left(k\in N\right)\)
\(\Rightarrow\left(n^2+2n+1\right)+11=k^2\Rightarrow k^2-\left(n+1\right)^2=11\)
\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=11\)
Ta thấy: \(k+n+1>k-n-1\) và \(k+n+1;k-n-1\in N\)
\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=11\cdot1\)
Với \(k+n+1=11\Rightarrow k=6\)
Thay vào ta có: \(k-n-1=1\Rightarrow6-n-1=1\Rightarrow n=4\)
Đặt \(A=n^2-4n+7\) .
1. Với n = 0 => A = 7 không là số chính phương (loại)
2. Với n = 1 => A = 4 là số chính phương (nhận)
3. Với n > 1 , ta xét khoảng sau : \(n^2-4n+4< n^2-4n+7< n^2\)
\(\Rightarrow\left(n-2\right)^2< A< n^2\)
Vì A là số tự nhiên nên \(A=\left(n-1\right)^2\Leftrightarrow n^2-4n+7=n^2-2n+1\Leftrightarrow2n=6\Leftrightarrow n=3\)
Thử lại, n = 3 => A = 4 là một số chính phương.
Vậy : n = 1 và n = 3 thoả mãn đề bài .