Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
Để 5n + 6 chia hết cho n + 1
\(\Rightarrow\)5n + 5 + 1 chia hết cho n + 1
\(\Rightarrow\)1 chia hết cho n + 1
\(\Rightarrow\) n + 1 = 1\(\Rightarrow\)n=0
a, 6 chia hết cho n-2 => n-2 thuộc Ư(6)=(1,-1,2,-2,3,-3,6,-6)
hay n thuộc (3,1,4,0,5,-1,8,-4). Mà n thuộc Z
=> n= 3,1,4,0,5,-1,8,-4)
c, 4n+3 chia hết cho 2n+1 => 2(2n+1)+1 chia hết cho 2n+1
Mà 2(2n+1) chia hết cho 2n+1 => 1 chia hết cho 2n+1 hay 2n+1 thuộc Ư(1)=(1,-1)
=> n thuộc (0,-1)
Do n thuộc Z => n=0,-1
d, 3n+1 chia hết cho 11-n => -3(11-n)+34 chia hết cho 11-n
Mà -3(11-n) chia hết cho 11-n => 34 chia hết cho 11-n hay .........( làm tương tự câu c)
a) n-2 thuộc ước của 6
Ư (6)={+-1;+-2;+-3;+-6}
n-2=1 => n=3
n-2=-1 => n=1
n-2=2 => n=4
n-2=-2 => n=0
n-2=3 => n=5
n-2=-3 => n=-1
n-2=6 => n=8
n-2=-6 => n=-4
b) do 5n chia hết cho n nên 27 phải chia hết cho n
n thuộc N nên n =1,3,9,27
và 5n< hoặc =27
suy ra n=1 hoặc 3
n=1 thỏa mãn
n=3 thỏa mãn
suy ra 2 nghiệm
c) 4n-5 chia hết cho 2n-1
P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
d) 3n+1 chia hết cho 11-2n
+ 3n+1 chia hết cho 11-2n => 2(3n+1) chia hết cho 11-2n. Ta tìm điều kiện của n để 2(3n+1) chia hết cho 11-2n
+ 2(3n+1)=6n+2= -3(11-2n)+35 Ta thấy -3(11-2n) chia hết cho 11-2n => để 2(3n+1) chia hết cho 11-2n thì 35 phải chia hết cho 11-2n.
=> để 35 chia hết cho 11-2n thì 11-2n=-1, 1, -5, 5, -7, 7, -35, 35.
* Với 11-2n=-1 => n=6
* Với 11-2n=1 => n=5
* Với 11-2n=-5 => n=8
* Với 11-2n=5 => n=3
* Với 11-2n=-7 =>n=9
* Với 11-2n=7 => n=2
* Với 11-2n=-35 => n=23
* Với 11-2n=35 => n=-12
Với n=2, 3, 5, 6, 8, 9, 23, -12 thì 3n+1 chia hết cho 11-2n
\(\text{Ta có}:\)
\(27-5n\)\(⋮\)\(n\)
\(\text{Mà 5n}\)\(⋮\)\(5\)\(\text{nên 27 }⋮\)\(5\)
\(\Rightarrow n\inƯ\left(27\right)=\left\{1;3;9;27\right\}\)
\(\text{Vậy}\)\(n\in\left\{1;3;9;27\right\}\)
\(\text{Ta có}:\)
\(n+6\)\(⋮\)\(n+2\)
\(\Rightarrow n+2+4\)\(⋮\)\(n+2\)
\(\text{Mà n + 2}\)\(⋮\)\(n+2\)\(\text{nên 4}\)\(⋮\)\(n+2\)
\(\Rightarrow n+2\inƯ\left(4\right)=\left\{1,-1,2,-2,4,-4\right\}\)
\(\Rightarrow n\in\left\{-1,-3,0,-5,2,-6\right\}\)
\(\text{Mà n }\in N\)\(\text{nên}\)\(:\)
\(n\in\left\{0,2\right\}\)
A ) Ta có : n chia hết cho n và để n + 4 chia hết cho n thì 4 phải chia hết cho n .
=> n sẽ là ước của 4 .
Ư(4) = { 1 ; 2 ; 4 }
Vậy : n = 1 ; 2 hoặc 4 .
a) Vì n chia hết cho n nên n+4 cũng chia hết cho n \(\Leftrightarrow\)4 chia hết cho n
\(\Leftrightarrow\)n là ước của 4
\(\Leftrightarrow\)n \(\in\){ 1;2;4 }
Vậy với n \(\in\){ 1;2;4 } thì n+4 chia hết cho n
kb nha
a) 5n + 6 chia hết cho 5n + 1
5n + 1 + 5 chia hết cho 5n + 1
=> 5 chia hết cho 5n + 1
=> 5n + 1 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Xét 4 trường hợp, ta có '
5n + 1 = 1 => 5n = 0 => n = 0
5n + 1 = -1 => 5n = -2 => n = -2/5
5n + 1 = 5 => 5n = 4 => n = 4/5
5n + 1 = -5 => 5n = -6 => n = -6/5
b)
2n + 3 chia hết cho 3n + 1
3(2n + 3 ) chia hết cho 3n + 1
6n + 9 chia hết cho 3n + 1
6n + 2 + 7 chia hết cho 3n + 1
2(3n + 1) + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1 ; -1 ; 7 ; -7}
Còn lại làm giống bài a nha
a, 3n + 6 chia hết cho n
vì 3n chia hết cho n => để 3n + 6 chia hết cho n thì 6 phải chia hết cho n
=>n ЄƯ {1;2;3;6} vậy n = 1 ; 6 ;2;3
b, (5n-5)chia hết cho n
vì 5n chia hết cho n => để 5n - 5 chia hết cho n thì 5 phải chia hết cho n
=>n Є {1;5} vậy n = 1 ; 5
Để mk làm tiếp mấy bài còn lại nhé!
c) ta có: 3n + 9 chia hết cho n + 2
=> 3n + 6 + 3 chia hết cho n + 2
3.(n+2) + 3 chia hết cho n + 2
mà 3.(n+2) chia hết cho n + 2
=> 3 chia hết cho n + 2
...
bn tự làm tiếp nhé!
d) ta có: 4n + 8 chia hết cho n - 2
=> 4n - 8 + 16 chia hết cho n - 2
4.(n-2) + 16 chia hết cho n - 2
mà 4.(n-2) chia hết cho n - 2
=> 16 chia hết cho n - 2
...
e) ta có: 3n + 8 chia hết cho 2n + 1
=> 2.(3n+8) chia hết cho 2n + 1
6n + 16 chia hết cho 2n + 1
6n + 3 + 13 chia hết cho 2n + 1
3.(2n+1) + 13 chia hết cho 2n + 1
mà 3.(2n+1) chia hết cho 2n + 1
=> 13 chia hết cho 2n + 1
...
Ta có: 5n+6 chia hết cho n+1 (1)
Mà n+1 chia hết cho n+1 nên 5(n+1) chia hết cho n+1=>5n+5 chia hết cho n+1 (2)
Từ (1) và (2) =>(5n+6) - (5n+5) chia hết cho n+1
=>1 chia hết cho n+1
=> \(n+1\inƯ\left(1\right)\)
=>n+1=1
=>n=0
chỉ tìm được n chứ không chứng minh được