Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3m^2+6n-61\)chia cho 3 dư 2 nên ta đặt
\(3m^2+6n-61=3k+2\)
\(\Rightarrow A=3^{3m^2+6n-61}+4=3^{3k+2}+4=9.27^k+4\)
Ta có 27 chia 13 dư 1 nên \(27^k\)chia 13 dư 1
\(\Rightarrow9.27^k\)chia 13 dư 9
\(\Rightarrow9.27^k+4\)chia hết cho 13 hay A chia hết cho 13
Mà A là số nguyên tố nên A = 13
\(\Rightarrow k=0\)
\(\Rightarrow3m^2+6n-61=2\)
\(\Leftrightarrow m^2+2n=21\left(1\right)\)
Từ (2) ta có được m2 phải là số lẻ và nhỏ hơn 21
\(\Rightarrow m^2=\orbr{\begin{cases}1\\9\end{cases}\Rightarrow m=\orbr{\begin{cases}1\\3\end{cases}}}\)
\(\Rightarrow n=\orbr{\begin{cases}10\\6\end{cases}}\)
Vậy giá trị \(\left(m,n\right)=\left(1,10;3,6\right)\)
\(B=\left(n^4-3n^3\right)+\left(2n^3-6n^2\right)+\left(7n-21\right)\)
\(=n^3\left(n-3\right)+2n^2\left(n-3\right)+7\left(n-3\right)\)
\(=\left(n^3+2n^2+7\right)\left(n-3\right)\)
Dễ thấy \(n^3+2n^2+7>n-3\), mà số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó.
\(\Rightarrow n-3=1\)
\(\Rightarrow n=4\)
Thử lại : \(B=103\left(TM\right)\)
\(A=n^3-6n^2+9n-2=n\left(n^2-6n+9\right)-2=n\left(n-3\right)^2-2\)
Vì một trong các thừa số \(n\) và \(\left(n-3\right)^2\) là số chẵn cho nên \(n\left(n-3\right)^2⋮2\forall n\in N\)
\(\Rightarrow n\left(n-3\right)^2-2⋮2\forall n\in N\) (số chẵn trừ đi số chẵn bằng số chẵn)
\(\Rightarrow A⋮2\forall n\in N\)
Mà 2 là số nguyên tố duy nhất mà chia hết cho 2
\(\Rightarrow n^3-6n^2+9n-2=2\)
\(\Leftrightarrow n^3-6n^2+9n-4=0\)
Giải phương trình trên ta được \(n\in\left\{1;4\right\}\) (đều thoả mãn điều kiện \(n\in N\))
Vậy với \(n\in\left\{1;4\right\}\)thì \(A=n^3-6n^2+9n-2\) là số nguyên tố.
a) ta có A=n2(n-1)+(n-1)=(n-1)(n2+1)
vì A nguyên tố nên A chỉ có 2 ước
TH1 n-1=1 và n2+1 nguyên tố => n=2 và n2+1=5 thỏa mãn
TH2 n2+1=1 và n-1 nguyên tố => n=0 và n-1 = -1 k thỏa mãn
vậy n=2
xin lỗi mình chỉ biết làm phần a thôi còn phần b,c bạn tự làm nhé
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
B = (n^4-3n^3)+(2n^3-6n^2)+(7n-21) = (n-3).(n^3+2n^2+7)
Để B là số nguyên tố => n-3 = 1 hoặc n^3+2n^2+7 = 1
=> n=4 hoặc n^3+2n^2+6=0
=> n=4 ( vì n^3+2n^2+6 > 0 )
Khi đó : B = 4^4-4^3-6.4^2+7.4-21 = 103 là số nguyên tố (tm)
Vậy n = 4
k mk nha
Đặt \(\hept{\begin{cases}A=3^{3m^2+6n-61}+4\\t=3m^2+6n-61\end{cases}}\)
Ta có t chia cho 3 dư 2 nên t = 3k + 2
\(A=3^{3k+2}+4=9.27^k+4\)
Ta có 27 chia 13 dư 1 nên \(9.27^k\)chia cho 13 dư 9
\(\Rightarrow9.27^k+4\) chia hết cho 13
Vậy A = 13
=> k = 0 => t = 2
=> 3m2 + 6n - 61 = 2
<=> m2 + 2n = 21
Ta nhận xét là m2 là bình phương của số lẻ nhỏ hơn 21
=> m2 = (1, 9)
=> m = (1; 3)
=> n = (10; 6)