K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2015

=> \(\sin x=\frac{2-m^2}{3}\) (*)

khi \(x\in\left(\frac{-\pi}{3};\frac{\pi}{2}\right)\) => \(\sin x\in\left(\frac{-\sqrt{3}}{2};1\right)\)

Để (*) có nghiệm \(x\in\left(\frac{-\pi}{3};\frac{\pi}{2}\right)\) <=> \(\frac{2-m^2}{3}\in\left(\frac{-\sqrt{3}}{2};1\right)\)

<=> \(\frac{-\sqrt{3}}{2}\le\frac{2-m^2}{3}\le1\Leftrightarrow\frac{-3\sqrt{3}}{2}\le2-m^2\le3\Leftrightarrow\frac{-3\sqrt{3}-4}{2}\le-m^2\le1\)

<=> \(-1\le m^2\le\frac{4+3\sqrt{3}}{2}\Leftrightarrow-\sqrt{\frac{4+3\sqrt{3}}{2}}\le m\le\sqrt{\frac{4+3\sqrt{3}}{2}}\) 

Vậy với \(-\sqrt{\frac{4+3\sqrt{3}}{2}}\le m\le\sqrt{\frac{4+3\sqrt{3}}{2}}\) thì pt .....

15 tháng 12 2017

C. Tây ban-nha, Bồ-đào-nha

2 tháng 1 2017

Đk : Cosx ≠ 0 và Sinx ≠ 0 ↔ x ≠ k. π/2. Khi đó :
<1> ↔ Tan^2x + cot^2x – 2( Tanx + cotx) = m
↔ [Tan^2x + 1/( Tan^2x)] – 2[ Tanx + 1/( Tanx)] = m
Đặt tanx + 1/tanx = t ( t € R )
PT trên trở thành
t^2 – 2 -2t = m<*>
a, Bài toán quy về tìm m để PT <*> có nghiệm
<*> ↔ t^2 – 2t -2 – m = 0
Để thỏa mãn thì ; ∆’ = 1 +2 + m ≥ 0 ↔ m ≥ - 3
b, Với x thuộc (0;pi/4) thì tanx > 0
Khi đó t ≥ 2 ( theo BĐT Cô-si)
Bài toán quy về tìm m để PT <*> có nghiệm t ≥ 2
Xét hàm số y = t^2 – 2t -2 trên [2; +∞)
Bạn cũng vẽ bảng biến thiên ra
Từ bảng biến thiên ta thấy để thỏa mãn thì
m ≥ -2

2 tháng 1 2017

bài này mình tính ko ra

2 tháng 1 2017

m` tính cái mồ có mà trên mạng ko có để cop

2*sin x=2m+3

=>sin x=m+3/2

\(x\in\left[0;pi\right]\)

=>sin x thuộc [0;1]

=>0<=m+3/2<=1

=>-3/2<=m<=-1/2

2 tháng 1 2017

khó quá đi ; mà hình như nó gần dúng như bài 4 bạn đăng á !!

Mk ko bk nữa

5 tháng 1 2021

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

5 tháng 1 2021

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

NV
7 tháng 5 2019

Bài 1:

a/ Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)

\(\Leftrightarrow\left(m+1\right)\left(m-2\right)< 0\)

\(\Rightarrow-1< m< 2\)

b/ Để \(f\left(x\right)>0\) vô nghiệm \(\Rightarrow f\left(x\right)\le0\) đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m+1< 0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-m+3\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m\ge3\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Bài 2:

a/ \(\Leftrightarrow\left\{{}\begin{matrix}2>0\\\Delta=\left(m-2\right)^2-8\left(-m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+4m-28< 0\)

\(\Rightarrow-2-4\sqrt{2}< m< -2+4\sqrt{2}\)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta=\left(m-1\right)^2-4m\left(m-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left(m-1\right)\left(-1-3m\right)\ge0\end{matrix}\right.\) \(\Rightarrow0< m\le1\)

Bài 3:

\(cot\left(x-\frac{\pi}{4}\right)=\frac{cos\left(x-\frac{\pi}{4}\right)}{sin\left(x-\frac{\pi}{4}\right)}=\frac{cosx.cos\frac{\pi}{4}+sinx.sin\frac{\pi}{4}}{sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}}=\frac{sinx+cosx}{sinx-cosx}\)

NV
15 tháng 12 2020

ĐKXĐ: \(x\ge0\)

\(\left(x^2-x-m\right)\sqrt{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)

Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm

Do đó:

a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm 

\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)

b. Để pt có 2 nghiệm pb 

TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0

\(\Leftrightarrow m=0\)

TH2: (1) có 2 nghiệm trái dấu

\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)

\(\Rightarrow m\ge0\)

c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)

17 tháng 12 2021

\(x^4+2x^3+5x^2+4x-1-m=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+4\left(x^2+x\right)-1-m=0\left(1\right)\)

\(đặt:x^2+x=t\ge\dfrac{-\Delta}{4a}=-\dfrac{1}{4}\)

\(\left(1\right)\Leftrightarrow t^2+4t-1-m=0\) có nghiệm trên \([-\dfrac{1}{4};\text{+∞})\)

\(f\left(t\right)=t^2+4t-1=m\)

\(f\left(-\dfrac{b}{2a}\right)=-5\)

\(f\left(-\dfrac{1}{4}\right)=-\dfrac{31}{16}\Rightarrow m\ge-\dfrac{31}{16}\Rightarrow\left[{}\begin{matrix}t=\dfrac{-b}{2a}=-2\Rightarrow x^2+x+2=0\left(vô-nghiệm\right)\left(loại\right)\\\left\{{}\begin{matrix}t1=\dfrac{-4+\sqrt{20+4m}}{2}=-2+\sqrt{5+m}\\t2=\dfrac{-4-\sqrt{20+4m}}{2}=-2-\sqrt{5+m}\end{matrix}\right.\end{matrix}\right.\) 

\(x^2+x=t1=-2+\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=\sqrt{5+m}\) có nghiệm thuộc \(\left[-1;1\right]\)

\(\Rightarrow f\left(-\dfrac{b}{2a}\right)=\dfrac{7}{4}\)

\(f\left(-1\right)=2;f\left(1\right)=4\)

\(\Rightarrow\dfrac{7}{4}\le\sqrt{5+m}\le4\Leftrightarrow\dfrac{-31}{16}\le m\le11\)

\(x^2+x=t2=-2-\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=-\sqrt{5+m}\)

có nghiệm trên \(\left[-1;1\right]\)

\(x^2+x+2>0\Rightarrow x^2+x+2=-\sqrt{5+m}< 0\left(vô-lí\right)\Rightarrow vô-nghiệm\forall m\)

\(\Rightarrow\dfrac{-31}{16}\le m\le11\) thì pt có  nghiệm thuộc \(\left[-1;1\right]\)