K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2015

=> \(\sin x=\frac{2-m^2}{3}\) (*)

khi \(x\in\left(\frac{-\pi}{3};\frac{\pi}{2}\right)\) => \(\sin x\in\left(\frac{-\sqrt{3}}{2};1\right)\)

Để (*) có nghiệm \(x\in\left(\frac{-\pi}{3};\frac{\pi}{2}\right)\) <=> \(\frac{2-m^2}{3}\in\left(\frac{-\sqrt{3}}{2};1\right)\)

<=> \(\frac{-\sqrt{3}}{2}\le\frac{2-m^2}{3}\le1\Leftrightarrow\frac{-3\sqrt{3}}{2}\le2-m^2\le3\Leftrightarrow\frac{-3\sqrt{3}-4}{2}\le-m^2\le1\)

<=> \(-1\le m^2\le\frac{4+3\sqrt{3}}{2}\Leftrightarrow-\sqrt{\frac{4+3\sqrt{3}}{2}}\le m\le\sqrt{\frac{4+3\sqrt{3}}{2}}\) 

Vậy với \(-\sqrt{\frac{4+3\sqrt{3}}{2}}\le m\le\sqrt{\frac{4+3\sqrt{3}}{2}}\) thì pt .....

15 tháng 12 2017

C. Tây ban-nha, Bồ-đào-nha

2 tháng 1 2017

Đk : Cosx ≠ 0 và Sinx ≠ 0 ↔ x ≠ k. π/2. Khi đó :
<1> ↔ Tan^2x + cot^2x – 2( Tanx + cotx) = m
↔ [Tan^2x + 1/( Tan^2x)] – 2[ Tanx + 1/( Tanx)] = m
Đặt tanx + 1/tanx = t ( t € R )
PT trên trở thành
t^2 – 2 -2t = m<*>
a, Bài toán quy về tìm m để PT <*> có nghiệm
<*> ↔ t^2 – 2t -2 – m = 0
Để thỏa mãn thì ; ∆’ = 1 +2 + m ≥ 0 ↔ m ≥ - 3
b, Với x thuộc (0;pi/4) thì tanx > 0
Khi đó t ≥ 2 ( theo BĐT Cô-si)
Bài toán quy về tìm m để PT <*> có nghiệm t ≥ 2
Xét hàm số y = t^2 – 2t -2 trên [2; +∞)
Bạn cũng vẽ bảng biến thiên ra
Từ bảng biến thiên ta thấy để thỏa mãn thì
m ≥ -2

2 tháng 1 2017

bài này mình tính ko ra

2 tháng 1 2017

m` tính cái mồ có mà trên mạng ko có để cop

2*sin x=2m+3

=>sin x=m+3/2

\(x\in\left[0;pi\right]\)

=>sin x thuộc [0;1]

=>0<=m+3/2<=1

=>-3/2<=m<=-1/2

2 tháng 1 2017

khó quá đi ; mà hình như nó gần dúng như bài 4 bạn đăng á !!

Mk ko bk nữa

NV
29 tháng 9 2020

d.

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)

\(tan^4x-3tan^2x-4tanx-3=0\)

\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)

\(\Leftrightarrow tan^2x-tanx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)

28 tháng 9 2020

mọi người giúp hộ mình nhanh với

5 tháng 1 2021

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

5 tháng 1 2021

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)