K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

đặt a=12x,b=12y(x<y và ucln(x,y)=1 và x,y<1) do bcnn(a,b)=180 nên 180chia hết cho a và b nên 180 chia hết cho 12xy suy ra 15 chia hết cho xy mà x,y>1 và x<y nên x=3,y=5 suy ra a=36,b=60

5 tháng 11 2021
☺😊🥰😇😊😉🙃😂😍🤩😗☺☺😙😙
3 tháng 8 2021

Ta có (a;b).[a;b] = a.b

\(\Rightarrow ab=12.180=2160\)

Lại có (a;b) = 12 đặt \(\hept{\begin{cases}a=12m\\b=12n\end{cases}}\left(m< n;m;n\inℕ^∗\right)\)

Khi đó ab = 1260 

\(\Leftrightarrow12m.12n=2160\)

\(\Leftrightarrow m.n=15\)

Lập bảng xét các trường hợp 

m515
n31
a60180
b3612(loại)

Vậy a = 60 ; b = 36 

4 tháng 8 2021

24 và 36

25 tháng 2 2016

=>a=12m

b=12n (ưcln(m;n)=1;m;n thuộc N

tích ab=180*12=2160

=>12n12m=2160

=>144mn=2160

=>mn=15

mà ƯCLN(m;n)=1

=>(m;n)=(5;3);(3;5)

=>(a;b)=(60;36);(36;60)

26 tháng 11 2021

TL ;

\(a=180;60\)

\(b=12;36\)

HT

28 tháng 11 2023

Vì ƯCLN(a;b) = 12 ⇒  a = 12.k; b = 12.d (k;d) = 1

Theo bài ra ta có: a.b = 12.k.12.d = 12.252 

                                            k.d     = 12.252: 12:12

                                            k.d     = 21

21  = 3.7 ⇒ Ư(21) = {1; 3; 7; 21)

Lập bảng ta có:

k 1 3 7 21
d 21 7 3 1
a = 12k 12 36 84 252
b = 12d 252 84 36 12

Theo bảng trên ta có:

(a;b) = (12; 252); (36; 84); (84; 36); (252; 12)

Vì 12 < a < b nên (a;b) = (36; 84)

Kết luận: các cặp số tự nhiên a; b thỏa mãn đề bài là: (a;b) = (36; 84)

                     

 

23 tháng 3 2016

Vào câu hỏi tương tự

18 tháng 5 2017

Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b

\(\Rightarrow a.b=336.12=4032\)

Vì ƯCLN (a,b) = 12

\(\Rightarrow\left\{{}\begin{matrix}a=12k\\b=12q\end{matrix}\right.\left(ƯCLN\left(k,q\right)=1;k>q\right)\)

Mà : a.b = 4032

\(\Rightarrow12k.12q=4032\Rightarrow\left(12.12\right)\left(k.q\right)=4032\)

\(\Rightarrow144.k.q=4032\Rightarrow k.q=28\)

+) \(\Rightarrow\left\{{}\begin{matrix}k=28\\q=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=28.12\\b=1.12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=336\\b=12\end{matrix}\right.\)

+) \(\Rightarrow\left\{{}\begin{matrix}k=14\\q=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=14.12\\b=12.2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=168\\b=24\end{matrix}\right.\)

+) \(\Rightarrow\left\{{}\begin{matrix}k=7\\q=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=7.12\\b=4.12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=84\\b=48\end{matrix}\right.\)

Vậy a = 336 ; b = 12

a = 168 ; b = 24

a = 84 ; b = 48

6 tháng 1 2019

Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b

⇒a.b=336.12=4032⇒a.b=336.12=4032

Vì ƯCLN (a,b) = 12

⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)

Mà : a.b = 4032

⇒12k.12q=4032⇒(12.12)(k.q)=4032⇒12k.12q=4032⇒(12.12)(k.q)=4032

⇒144.k.q=4032⇒k.q=28⇒144.k.q=4032⇒k.q=28

+) ⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12

+) ⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24

+) ⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48

Vậy a = 336 ; b = 12

a = 168 ; b = 24

a = 84 ; b = 48