K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 1:

$A=(9x^2-5x)+(5y^2+3y)$

$=[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]+5(y^2+\frac{3}{5}y+\frac{3^2}{10^2})-\frac{103}{90}$

$=(3x-\frac{5}{6})^2+5(y+\frac{3}{10})^2-\frac{103}{90}$

$\geq \frac{-103}{90}$

Vậy $A_{\min}=\frac{-103}{90}$. Giá trị này đạt tại $3x-\frac{5}{6}=y+\frac{3}{10}=0$

$\Leftrightarrow (x,y)=(\frac{5}{18}, \frac{-3}{10})$

 

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 2:

a. 

$-A=4x^2+5y^2-8xy-10y-12$

$=(4x^2-8xy+4y^2)+(y^2-10y+25)-37$

$=(2x-2y)^2+(y-5)^2-37\geq -37$

$\Rightarrow A\leq 37$

Vậy $A_{\max}=37$. Giá trị này đạt tại $2x-2y=y-5=0$

$\Leftrightarrow x=y=5$

b.

$-B=3x^2+16y^2+8xy+5x-2$

$=(x^2+16y^2+8xy)+2(x^2+\frac{5}{2}x+\frac{5^2}{4^2})-\frac{41}{8}$

$=(x+4y)^2+2(x+\frac{5}{4})^2-\frac{41}{8}$

$\geq \frac{-41}{8}$

$\Rightarrow B\leq \frac{41}{8}$
Vậy $B_{\max}=\frac{41}{8}$. Giá trị này đạt tại $x+4y=x+\frac{5}{4}=0$

$\Leftrightarrow x=\frac{-5}{4}; y=\frac{5}{16}$

5 tháng 4 2018

\(A=-4x^2-5y^2+8xy+10y+12\)

\(-A=4x^2+5y^2-8xy-10y-12\)

\(-A=\left(4x^2-8xy+y^2\right)+\left(4y^2-10y+\frac{25}{4}\right)-\frac{73}{4}\)

\(-A=\left(2x-y\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{73}{4}\)

Mà : \(\left(2x-y\right)^2\ge0\forall x;y\)

         \(\left(2y-\frac{5}{2}\right)^2\ge0\forall y\)

\(\Rightarrow-A\ge-\frac{73}{4}\)

\(\Leftrightarrow A\le\frac{73}{4}\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}2x-y=0\\2y-\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{5}{4}\end{cases}}\)

Vậy \(A_{Max}=\frac{73}{4}\Leftrightarrow\left(x;y\right)=\left(\frac{5}{8};\frac{5}{4}\right)\)

6 tháng 7 2017

A= \(-\left(4x^2-8xy+4y^2\right)-\left(y^2-10y+25\right)+37\)

\(=-\left(2x-2y\right)^2-\left(y-5\right)^2+37\)

\(\Rightarrow MaxA=37\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}2x=2y\\y=5\end{cases}\Leftrightarrow x=y=5}\)

2 tháng 3 2020

1) 2x + 2y - x(x+y)

= 2(x + y) - x(x + y)

= (2 - x)(x + y)

2/ 5x2 - 5xy -10x + 10y

= 5x(x - y) - 10(x - y)

= (5x - 10(x - y)

3/ 4x2 + 8xy - 3x - 6y

= 4x(x + 2y) - 3(x + 2y)

= (4x - 3)(x + 2y)

2 tháng 3 2020

1) 2x + 2y - x(x + y) 

= 2(x + y) - x(x + y)

= (2 - x)(x + y)

2) 5x2 - 5xy - 10x + 10y 

= 5x(x - y) - 10(x - y)

= (5x - 10)(x - y)

= 5(x - 2)(x - y)

3) 4x2 + 8xy - 3x - 6y  

= 4x(x + 2y) - 3(x + 2y)

= (4x - 3)(x + 2y)

4) 2x2 + 2y2 - x2z + z - y2z - 2 

= 2(x2 + y2 - z(x2 + y2) - (2 - z)

= (2 - z)(x2 + y2) - (2 - z)

= (2 - z)(x2 + y2)

5) x2 + xy - 5x - 5y

= x(x + y) - 5(x + y)

= (x - 5)(x + y)

6) x(2x - 7) - 4x + 14 

= x(2x - 7) - 2(2x - 7) 

= (x - 2)(2x - 7)

7)x2 - 3x + xy - 3y  

= x(x + y) - 3(x + y)

= (x - 3)(x + y)

a: A=x^2-2xy+y^2+y^2-4y+4+1

=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2

b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2

=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2

Dấu = xảy ra khi x=1 và y=-1

14 tháng 8 2023

có lời giải chi tiết ko ạ

16 tháng 10 2015

a/25-9y^2-4x^2+12xy

=-(9y^2-12xy+4x^2-25)

=-[(3y)^2-2.3y.2x+(2x)^2-5^2]

=-[(3y-2x)^2-5^2]

=-(3y-2x-5)(3y-2x+5)

b/4x^2-8xy+4y^2-5x+5y

=4(x^2-2.x.y+y^2)-5(x-y)

=4(x-y)^2-5(x-y)

=(x-y)(4x-4y-5)

21 tháng 10 2023

\(A=-x^2+2xy-4y^2+2x+10y-3\)

\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)

\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)

\(B=-4x^2-5y^2+8xy+10y+12\)

\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)

\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)

\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)

=>x=y=5

 

3 tháng 9 2020

a) \(\left(3x^2y-11x^2-5y\right)\left(8xy-5x+6\right)\)

\(=3x^2y\left(8xy-5x+6\right)-11x^2\left(8xy-5x+6\right)-5y\left(8xy-5x+6\right)\)

\(=24x^3y^2-15x^3y+18x^2y-88x^3y+55x^3-66x^2-40xy^2+25xy-30y\)

\(=24x^3y^2-103x^3y+18x^2y+55x^3-66x^2-40xy^2+25xy-30y\)

b) \(\left(-4x^2y-5x^2+3y^3\right)\left(2x^2-xy+3y^2\right)\)

\(=-4x^2y\left(2x^2-xy+3y^2\right)-5x^2\left(2x^2-xy+3y^2\right)+3y^3\left(2x^2-xy+3y^2\right)\)

\(=-8x^4y+4x^3y^2-12x^2y^3-10x^4+5x^3y-15x^2y^2+6x^2y^3-3xy^4+9y^5\)

\(=-8x^4y+4x^3y^2-6x^2y^3-10x^4+5x^3y-15x^2y^2-3xy^4+9y^5\)

P/s: Ko chắc ạ!