\(-x^2\)+2xy\(-4y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

\(A=-x^2+2xy-4y^2+2x+10y-3\)

\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)

\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)

\(B=-4x^2-5y^2+8xy+10y+12\)

\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)

\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)

\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)

=>x=y=5

 

hoc tot de lam lien doi nho chua.

7 tháng 4 2018

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

19 tháng 10 2022

\(D=-5\left(x^2+\dfrac{4}{5}x+\dfrac{1}{5}\right)\)

\(=-5\left(x^2+2\cdot x\cdot\dfrac{2}{5}+\dfrac{4}{25}+\dfrac{1}{25}\right)\)

\(=-5\left(x+\dfrac{2}{5}\right)^2-\dfrac{1}{5}< =-\dfrac{1}{5}\)

Dấu = xảy ra khi x=-2/5

NV
11 tháng 10 2020

a/ Đề sai, hệ số của \(y^2\) phải âm thì biểu thức mới tồn tại max

b/ \(B=-3x^2-9x-7=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)

\(B_{max}=-\frac{1}{4}\) khi \(x=-\frac{3}{2}\)

c/ \(C=-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)+5\)

\(C=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)

\(C_{max}=5\) khi \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

15 tháng 3 2017

1) a) Đặt biểu thức là A

\(A=2x^2+4y^2-4xy-4x-4y+2017\)

\(A=\left(x-2y\right)^2+x^2-4x-4y+2017\)

\(A=\left(x-2y\right)^2+2\left(x-2y\right)+x^2-6x+2017\)

\(A=\left(x-2y-1\right)^2+\left(x+3\right)^2+2008\)

Vậy: MinA=2008 khi x=-3; y=-2

15 tháng 3 2017

3) a) \(A=\dfrac{1}{x^2+x+1}\)

\(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\Rightarrow B\ge\dfrac{3}{4}\Rightarrow A\ge\dfrac{4}{3}\)

Vậy MinA\(\dfrac{4}{3}\) khi x=-0,5

7 tháng 4 2018

A=2x2+y2-2xy-2x+3

= (x2-2xy+y2)+(x2-2x+1)+2

= (x-y)2+(x-1)2 +2

do (x-y)2 ≥ 0 ∀ x,y

(x-1)2 ≥ 0 ∀ x

=> (x-y)2+(x-1)2 +2 ≥ 2

=> A ≥ 2

nimA=2 dấu "=" xảy ra khi

x-y=0

x-1=0

=> x=y=1

vậy nimA =2 khi x=y=1

20 tháng 10 2021

\(A=-2x^2-10y^2+4xy+4x+4y+2016\)

\(=-2.\left(x^2+5y^2-4xy-4x-4y\right)+2016\)

\(=-2.\left(x^2+4y^2+4-4xy-4x+8y+y^2-12y+36\right)+2.36+2016\)

\(=-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\)

Ta có: \(\left(x-2y-2\right)^2+\left(y-6\right)^2\ge0\)

\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]\le0\)

\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\le2088\)

\(\Rightarrow A\le2088\)

Vậy giá trị lớn nhất của \(A=2088\) khi: \(\hept{\begin{cases}x-2y-2=0\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=2y+2\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=6\end{cases}}\)

23 tháng 10 2022

sao lại có thêm + 4 vào mà ko có thêm -4 vào ?

 

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

NV
25 tháng 10 2019

\(A=-2\left(x^2+y^2+1-2xy-2x+2y\right)-2\left(4y^2-4y+1\right)+2017\)

\(A=-2\left(x-y-1\right)^2-2\left(2y-1\right)^2+2017\le2017\)

\(A_{max}=2017\) khi \(\left\{{}\begin{matrix}x=\frac{3}{2}\\y=\frac{1}{2}\end{matrix}\right.\)

24 tháng 7 2018

@Nguyễn Nhật Minh

@Aki Tsuki

@Phùng Khánh Linh

@Nào Ai Biết

@Nguyễn Thanh Hằng

@Mysterious Person

giúp mk với

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Bài 1:

\(A=-x^2-5x+3=\frac{37}{4}-(x^2+5x+\frac{25}{4})\)

\(=\frac{37}{4}-(x+\frac{5}{2})^2\)

\((x+\frac{5}{2})^2\geq 0\Rightarrow A=\frac{37}{4}-(x+\frac{5}{2})^2\leq \frac{37}{4}-0=\frac{37}{4}\)

Vậy A(max)\(=\frac{37}{4}\Leftrightarrow x=\frac{-5}{2}\)

---------------

\(B=-2x^2-7x+9=\frac{121}{8}-2(x^2+\frac{7}{2}x+\frac{49}{16})\)

\(=\frac{121}{8}-2(x+\frac{7}{4})^2\)

\((x+\frac{7}{4})^2\ge 0\Rightarrow B=\frac{121}{8}-2(x+\frac{7}{4})^2\leq \frac{121}{8}-2.0=\frac{121}{8}\)

Vậy B(max)\(=\frac{121}{8}\Leftrightarrow x=\frac{-7}{4}\)

Các câu còn lại bạn cũng làm tương tự.