K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2020

a) \(\left(3x^2y-11x^2-5y\right)\left(8xy-5x+6\right)\)

\(=3x^2y\left(8xy-5x+6\right)-11x^2\left(8xy-5x+6\right)-5y\left(8xy-5x+6\right)\)

\(=24x^3y^2-15x^3y+18x^2y-88x^3y+55x^3-66x^2-40xy^2+25xy-30y\)

\(=24x^3y^2-103x^3y+18x^2y+55x^3-66x^2-40xy^2+25xy-30y\)

b) \(\left(-4x^2y-5x^2+3y^3\right)\left(2x^2-xy+3y^2\right)\)

\(=-4x^2y\left(2x^2-xy+3y^2\right)-5x^2\left(2x^2-xy+3y^2\right)+3y^3\left(2x^2-xy+3y^2\right)\)

\(=-8x^4y+4x^3y^2-12x^2y^3-10x^4+5x^3y-15x^2y^2+6x^2y^3-3xy^4+9y^5\)

\(=-8x^4y+4x^3y^2-6x^2y^3-10x^4+5x^3y-15x^2y^2-3xy^4+9y^5\)

P/s: Ko chắc ạ!

18 tháng 10 2021

\(a,=15x^4-12x^3+9x^2\\ b,=-15x^3y^2+25x^2y^2-5xy^3\\ c,=5x^3-19x^2+12x\\ d,=3x^3+xy^2+5x^2y-9x^2y-3y^3-15xy^2\\ =3x^3-3y^3-14xy^2-4x^2y\)

15 tháng 10 2021

Bài 2: 

a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)

b: \(5x^2+5xy-x-y\)

\(=5x\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(5x-1\right)\)

c:\(-6x^2+7x-2\)

\(=-6x^2+3x+4x-2\)

\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)

\(=\left(2x-1\right)\left(-3x+2\right)\)

15 tháng 10 2021

1.

a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)

b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)

\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)

2.

a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)

b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)

c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)

3.

b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)

c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)

4.

a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

31 tháng 10 2021

1.\(=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x+y\right)^2-\left(2z\right)^2\right]=5\left(x+y-2z\right)\left(x+y+2z\right)\)

2. \(=\left(-5x^2+15x\right)+\left(x-3\right)=-5x\left(x-3\right)+\left(x-3\right)=\left(1-5x\right)\left(x-3\right)\)

3. \(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)

4.\(=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\)

5. \(=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)

6. \(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)

7. \(=\left(x^2+x\right)-\left(5x+5\right)=x\left(x+1\right)-5\left(x+1\right)=\left(x-5\right)\left(x+1\right)\)

31 tháng 10 2021

\(1,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ 2,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ 3,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ 4,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=x^2+x+3x+3=\left(x+3\right)\left(x+1\right)\\ 6,=\left(x^2+2x+1\right)\left(x^2-2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\\ 7,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)

26 tháng 11 2021

a, \(15^4-12x^3+9x^2\)

b,\(-15x^3y^2+25x^2y^2-5xy^3\)

c, \(5x^3-19x^2+12x\)

d, 

x3+xy2+5x2y9x2y3y315xy2=3x33y314xy24x2y

26 tháng 11 2021

\(a,=15x^4-12x^3+9x^2\\ b,=-15x^3y^2+25x^2y^2-5xy^3\\ c,=5x^3-15x^2-4x^2+12x=5x^3-19x^2+12x\\ d,=3x^3+xy^2+5x^2y-9x^2y-3y^3-15xy^2=3x^3-14xy^2-4x^2y-3y^3\)

1 tháng 11 2021

a) 5x^2. (3x^2 - 7x + 2)

= 5x^2. 3x^2 + 5x^2. (- 7x) + 5x^2. 2

= 15x^4 - 35x^3 + 10x^2

b) (2x^2 - 3x). (5x^2 - 5x + 1)

= 2x^2. 5x^2 - 2x^2. 5x + 2x^2. 1 - 3x. 5x^2 + 3x. 5x^2 + 3x. 5x - 3x. 1

= 10x^4 - 25x^3 + 17x^2 - 3x

29 tháng 10 2023

Bài 1:

a: \(x\left(x+y\right)+5y-x^2\)

\(=x^2+xy+5y-x^2\)

=xy+5y

b: \(\left(x-2\right)\left(y+1\right)-xy+4\)

\(=xy+x-2y-2-xy+4\)

=-2y+x+2

c: \(\dfrac{\left(4x^2y+12xy^2-8xy\right)}{2xy}\)

\(=\dfrac{2xy\cdot2x+2xy\cdot6y-2xy\cdot4}{2xy}\)

=2x+6y-4

d: \(\left(x-4\right)^2+8x-7\)

\(=x^2-8x+16+8x-7\)

\(=x^2+9\)

 

24 tháng 10 2023

1) x³ + 2x² + x

= x(x² + 2x + 1)

= x(x + 1)²

2) 5x³ - 10x² + 5x

= 5x(x² - 2x + 1)

= 5x(x - 1)²

3) 8x²y - 8xy + 2x

= 2x(4xy - 4y + 1)

5) 2x² + 5x³ + x²y

= x²(2 + 5x + y)

6) 4x²y - 8xy² + 18x²y²

= 2xy(2x - 4y + 9xy) 

24 tháng 10 2023

loading...  Chúc Bạn Học Tốt !

23 tháng 10 2017

Nếu ol thì tham khảo nah nguoiemtinhthong.

1.1

2x2+5x−1=7x3−1−−−−−√2x2+5x−1=7x3−1

⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)−−−−−−−−−−−−−−−√(1)⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)(1)

Đặt a=x−1−−−−−√;b=x2+x+1−−−−−−−−√;a≥0;b>0a=x−1;b=x2+x+1;a≥0;b>0

pt (1) trở thành 3a2+2b2−7ab=03a2+2b2−7ab=0

a=2ba=2b v a=13ba=13b

Các bạn tự giải quyết tiếp nhé.

1.2

TXĐ D=[1;+∞)D=[1;+∞)

đặt a=x−1−−−−−√4;b=x+1−−−−−√4;a,b≥0a=x−14;b=x+14;a,b≥0

pt (2) trở thành 3a2+2b2−5ab=03a2+2b2−5ab=0

⇔a=b⇔a=b v a=23ba=23b

...

1.3

D=[3;+∞)D=[3;+∞)

Đặt a=x2+4x−5−−−−−−−−−√;b=x−3−−−−−√;a,b≥0a=x2+4x−5;b=x−3;a,b≥0

pt (3) trở thành 3a+b=11a2−19b2−−−−−−−−−√3a+b=11a2−19b2

⇔2a2−6ab−20b2=0⇔2a2−6ab−20b2=0

⇒a=5b⇒a=5b
...

1.4

ĐK

⇔2x2−2x+2=3(x−2)x(x+1)−−−−−−−−−−−−√2x2−2x+2=3(x−2)x(x+1)

⇔(x2−2x)+2(x+1)=3(x2−2x)(x+1)−−−−−−−−−−−−−√2(x2−2x)+2(x+1)=3(x2−2x)(x+1)

Đặt x2−2x−−−−−−√=ax2−2x=a; x+1−−−−−√=bx+1=b (a;b\geq0)

⇔2a2+2b2=3ab

1.5

Đặt 4x2−4x−10=t4x2−4x−10=t (t \geq 0)

⇔t=t+4x2−2x−−−−−−−−−−√t=t+4x2−2x

⇔t2−t−4x2+2x=0t2−t−4x2+2x=0

Δ=1−4(2x−4x2)=(4x−1)2Δ=1−4(2x−4x2)=(4x−1)2

⇒t=1−2xt=1−2x hoặc t=2xt=2x

23 tháng 10 2017

1.1

2.2+5.-1=7.3-1-----v2.2+5.-1=7.3-1

2(.2+x+1)+3(x-1)

3a+b=11a2-19b2

tóm tắt