Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunyakovsky ta được:
\(\left(x+y\right)\left(\frac{2020}{x}+\frac{1}{2020y}\right)\ge\left(\sqrt{x}\cdot\sqrt{\frac{2020}{x}}+\sqrt{y}\cdot\sqrt{\frac{1}{2020y}}\right)\)
\(=\left(\sqrt{2020}+\sqrt{\frac{1}{2020}}\right)^2=2020+\frac{1}{2020}+2=2022\frac{1}{2020}\)
\(\Leftrightarrow\frac{2021}{2020}\cdot S\ge2022\frac{1}{2020}\)
\(\Rightarrow S\ge2022\frac{1}{2020}\div\frac{2021}{2020}=2021\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{\sqrt{x}}{\sqrt{\frac{2020}{x}}}=\frac{\sqrt{y}}{\sqrt{\frac{1}{2020y}}}\\x+y=\frac{2021}{2020}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2020y\\x+y=\frac{2021}{2020}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2020}\end{cases}}\)
Vậy Min(S) = 2021 khi \(\hept{\begin{cases}x=1\\y=\frac{1}{2020}\end{cases}}\)
Đặt \(2020-x=u;x-2021=v\)thì \(u+v=-1\)
Phương trình trở thành \(\frac{u^2+uv+v^2}{u^2-uv+v^2}=\frac{19}{49}\Leftrightarrow30u^2+30v^2+68uv=0\)
\(\Leftrightarrow15\left(u+v\right)^2+4uv=0\Leftrightarrow4uv=-15\Leftrightarrow uv=\frac{-15}{4}\)
hay \(\left(2020-x\right)\left(x-2021\right)=-\frac{15}{4}\Leftrightarrow x^2-4041x+4082416,25=0\)
Dùng công thức nghiệm tìm được x = 2022, 5 hoặc x = 2018, 5
Từ \(x+y=1\)\(\Rightarrow\)
\(P=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\left(\frac{x}{\sqrt{y}}+\sqrt{y}\right)+\left(\frac{y}{\sqrt{x}}+\sqrt{x}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)
\(\ge2\sqrt{x}+2\sqrt{y}-\left(\sqrt{x}+\sqrt{y}\right)=\sqrt{x}+\sqrt{y}\)(1)
Có thể viết lại \(P=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}=\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)(2)
Từ (1) và (2) suy ra:
\(2S\ge\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{2}{\sqrt[4]{xy}}\ge\frac{2}{\sqrt{\frac{x+y}{2}}}=2\sqrt{2}\)\(\Rightarrow S\ge\sqrt{2}\)
Dễ thấy dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Với \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)=4\); mà \(4=2.2\)
Có ngay ĐK : \(\left(\sqrt{x}+1\right)\)và \(\left(\sqrt{y}+1\right)\)bằng 2.
\(x=1,y=1\)với TH \(\sqrt{1}=1\)
\(S=\frac{x^4}{y}+\frac{y^4}{x}\). Như phía trên :
\(x=1,y=1\)\(\Rightarrow S=\frac{1^4}{1}+\frac{1^4}{1}\Rightarrow S=1+1=2\)
Áp dụng: \(\left(a+b\right)^2\ge4ab\)
\(B=\dfrac{\left(x+2020\right)^2}{x}\ge\dfrac{4.2020.x}{x}=8080\)
\(B_{min}=8080\) khi \(x=2020\)