K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2: (3x-4)^2+2>=2

=>5/(3x-4)^2+2<=5/2

=>B>=-5/2

Dấu = xảy ra khi x=4/3

4: D=(3x^2+7-4)/(3x^2+7)=1-4/3x^2+7

3x^2+7>=7

=>4/3x^2+7<=4/7

=>-4/3x^2+7>=-4/7

=>D>=3/7

Dấu = xảy ra khi x=0

2) B = \(\dfrac{-5}{\left(3x-4\right)^2+2}\) 

Ta có: ( 3x-4)2 \(\ge\) 0 , \(\forall\) x

=> ( 3x-4)+2 \(\ge\) 2, \(\forall\) x

=> \(\dfrac{1}{\left(3x-4\right)^2+2}\) \(\le\) \(\dfrac{1}{2}\) , \(\forall\) x

=> \(\dfrac{-5}{\left(3x-4\right)^2+2}\) \(\ge\) \(\dfrac{-5}{2}\) , \(\forall\) x

=> B \(\ge\) \(\dfrac{-5}{2}\) 

Vậy B đạt GTNN khi bằng \(\dfrac{-5}{2}\) 

Dấu "= " xảy ra khi 3x - 4 = 0

4) D=\(\dfrac{3x^2+3}{3x^2+7}\) 

= 1 - \(\dfrac{4}{3x^2+7}\) 

Ta có: 3x2 \(\ge\) 0, \(\forall\) x

=> 3x2 +7 \(\ge\) 7, \(\forall\) x

=> \(\dfrac{1}{3x^2+7}\) \(\le\) \(\dfrac{1}{7}\) 

=> \(\dfrac{4}{3x^2+7}\) \(\le\) \(\dfrac{4}{7}\) 

=> 1 - \(\dfrac{4}{3x^2+7}\) \(\ge\) \(\dfrac{3}{7}\) 

Vậy D đạt GTNN khi bằng \(\dfrac{3}{7}\) 

Dấu "=" xảy ra khi x = 0

29 tháng 11 2015

GTNN của

+,G=3/2

+,H=-2015

+,K=5

11 tháng 10 2015

ta có: |x|+10 > 10 với mọi x

=> \(\frac{-10}{\left|x\right|+10}\le-\frac{10}{10}=-1\)

=> \(\frac{-10}{\left|x\right|+10}\) có GTLN là -1 <=> |x| +10=10 <=>x=0

Vậy GTLN của ps là -1 tại x=0

ko có GTNN đâu bn,nên ta tìm GTLN thôi

AH
Akai Haruma
Giáo viên
24 tháng 3 2023

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=(|2x-4|+|2x-8|)+|2x-6|=(|2x-4|+|8-2x|)+|2x-6|$

$\geq |2x-4+8-2x|+|2x-6|$

$=4+|2x-6|\geq 4$
Vậy $A_{\min}=4$. Giá trị này đạt tại \(\left\{\begin{matrix} (2x-4)(8-2x)\geq 0\\ 2x-6=0\end{matrix}\right.\Leftrightarrow x=3\)

25 tháng 3 2023

cảm ơn cô

 

 

1 tháng 3 2016

giúp với mình sắp nạp rồi

17 tháng 7 2019

Ta có: x4 \(\ge\)\(\forall\)x

=> x4 + 5 \(\ge\)\(\forall\)x

=> (x4 + 5)2 \(\ge\)25 \(\forall\)x

Dấu "=" xảy ra <=> x = 0

Vậy Min của A = 25 tại x = 0

17 tháng 7 2019

\(A=\left(x^4+5\right)^2=x^8+10x^4+25=x^4\left(x^4+10\right)+25\)

Vì \(x^4\ge0\)và \(x^4+10>0\)

\(\Rightarrow B_{min}=25\Leftrightarrow x^4\left(x^4+10\right)=0\)

\(\Rightarrow\hept{\begin{cases}x^4=0\\x^4+10=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)

\(KL:B_{min}=25\Leftrightarrow x=0\)

25 tháng 2 2022

\(C=x^2+2x+1\dfrac{1}{2}\\ \Rightarrow C=\left(x^2+2x+1\right)+\dfrac{1}{2}\\ \Rightarrow C=\left(x+1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=-1\)

Vậy \(C_{min}=\dfrac{1}{2}\Leftrightarrow x=-1\)

25 tháng 2 2022

 \(C=x^2+2x+1\dfrac{1}{2}.\\ C=x^2+2x+1+\dfrac{1}{2}.\\ C=\left(x+1\right)^2+\dfrac{1}{2}.\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\in R.\\ \dfrac{1}{2}>0. \)

\(\Rightarrow\left(x+1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}.\)

Dấu "=" xảy ra khi \(x+1=0.\Leftrightarrow x=-1.\)

Vậy GTNN của biểu thức C là \(\dfrac{1}{2}\) khi x = -1.