Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A=\dfrac{12x-9}{x^2+1}\)
\(\Leftrightarrow A-3=\dfrac{12x-9}{x^2+1}-\dfrac{3x^2+3}{x^2+1}\)
\(\Leftrightarrow A-3=\dfrac{12x-9-3x^2-3}{x^2+1}\)
\(\Leftrightarrow A-3=\dfrac{12x-3x^2-12}{x^2+1}\)
\(\Leftrightarrow A-3=\dfrac{-3\left(x^2-4x+4\right)}{x^2+1}\)
\(\Leftrightarrow A-3=\dfrac{-3\left(x-2\right)^2}{x^2+1}\le0\)
\(\Rightarrow A\le3\)
Vậy GTLN của A là 3 \(\Leftrightarrow x=2\)
a)
=(x-2)3
b)\(\left(2-x\right)^3\)
c)\(\left(x+\dfrac{1}{3}\right)^3\)
d)\(\left(\dfrac{x}{2}+y\right)^3\)
e)
\(=\left(x-1\right)^2\left(x-1-15\right)+25\left[3\left(x-1\right)-5\right]\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-3-5\right)\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-8\right)\)
a) \(\sqrt{\left|x-1\right|-3}\)
Với \(x\ge1\) thì
\(\sqrt{x-1-3}=\sqrt{x-4}\) được xác định khi:
\(x\ge4\)
Với \(x< 1\) thì
\(\sqrt{-\left(x-1\right)-3}=\sqrt{-x+1-3}=\sqrt{-x-2}\) được xác đinh khi:
\(x\le-2\)
\(a,\sqrt{\left|x-1\right|-3}\) xác định \(\Leftrightarrow\left|x-1\right|-3\ge0\Leftrightarrow\left|x-1\right|\ge3\)
\(TH_1:x\ge1\\ x-1\ge3\Leftrightarrow x\ge4\left(tm\right)\\ TH_2:x< 1\\ x-1\ge-3\\ \Leftrightarrow x\ge-2\left(tm\right)\)
Vậy căn thức trên xác định \(\Leftrightarrow x\ge4\)
\(b,\sqrt{x-2\sqrt{x-1}}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}x-2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}\le\dfrac{x}{2}\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1\le\dfrac{x^2}{4}\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x-4-x^2\le0\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-\left(x^2-4x+4\right)\le0\\x\ge1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2\ge0\left(LD\right)\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)
Vậy căn thức trên xác định \(\Leftrightarrow x\ge1\)
\(c,\dfrac{1}{\sqrt{9-12x+4x^2}}=\dfrac{1}{\sqrt{\left(3-2x\right)^2}}=\dfrac{1}{3-2x}\) xác định \(\Leftrightarrow3-2x\ne0\Leftrightarrow x\ne\dfrac{3}{2}\)
Vậy căn thức trên xác định \(\Leftrightarrow x\ne\dfrac{3}{2}\)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Ta có : \(B\text{=}4x^2-12x+9\)
\(B\text{=}\left(2x-3\right)^2\)
Với \(x\text{=}\dfrac{1}{2}\)
\(\Rightarrow B\text{=}\left(2.\dfrac{1}{2}-3\right)^2\)
\(B\text{=}\left(-2\right)^2\text{=}4\)
Ta có : \(A\text{=}5\left(x+3\right)\left(x-3\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)
\(A\text{=}5\left(x^2-9\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)
\(A\text{=}5x^2-45+4x^2+12x+9+x^2-12x+36\)
\(A\text{=}10x^2\)
Với \(x\text{=}-\dfrac{1}{5}\)
\(\Rightarrow A\text{=}10.\left(-\dfrac{1}{5}\right)^2\text{=}\dfrac{2}{5}\)
B = 4x² - 12x + 9
= (2x - 3)²
Tại x = 1/2 ta có:
B = (2.1/2 - 3)²
= (-2)²
= 4
-------------------
A = 5(x + 3)(x - 3) + (2x + 3)² + (x - 6)²
= 5x² - 45 + 4x² + 12x + 9 + x² - 12x + 36
= 10x²
Tại x = 1/5 ta có:
A = 10.(1/5)²
= 2/5