K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

15 tháng 10 2019

\(A=-\left(x^2-2x+4\right)\)

\(A=-\left(x+2\right)^2\)

vì -(x+2)^2 <=0

nên MIN A=0

<=>-(x+2)=0=>x=-2

vây min của A là 0 tại x=-2

15 tháng 10 2019

A = 2x - x- 4

A = - [ x- 2 . 1 / 2 . x + ( 1 / 2 )2 - ( 1 / 2 )-  4 ]

A = - ( x - 1 / 2 )- 17 / 4 \(\le\)- 17 / 4

Dấu = xảy ra \(\Leftrightarrow\)x - 1 / 2 = 0

                       \(\Rightarrow\)x = 1 / 2

Vậy : Min A = - 17 / 4 \(\Leftrightarrow\)x = 1 / 2

16 tháng 3 2018

Ta có:\(A=\dfrac{12x-9}{x^2+1}\)

\(\Leftrightarrow A-3=\dfrac{12x-9}{x^2+1}-\dfrac{3x^2+3}{x^2+1}\)

\(\Leftrightarrow A-3=\dfrac{12x-9-3x^2-3}{x^2+1}\)

\(\Leftrightarrow A-3=\dfrac{12x-3x^2-12}{x^2+1}\)

\(\Leftrightarrow A-3=\dfrac{-3\left(x^2-4x+4\right)}{x^2+1}\)

\(\Leftrightarrow A-3=\dfrac{-3\left(x-2\right)^2}{x^2+1}\le0\)

\(\Rightarrow A\le3\)

Vậy GTLN của A là 3 \(\Leftrightarrow x=2\)

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)