K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

\(A=x-x^2=-\left(x^2-x\right)=-\left(x^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}-\frac{1}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

15 tháng 6 2017

Mình mới lớp 5 thôi

9 tháng 5 2022

a.

\(A=B\)

\(\Leftrightarrow\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}=\dfrac{-16}{x^2-4}\);ĐK:\(x\ne\pm2\)

\(\Leftrightarrow\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-16}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2=-16\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4+16=0\)

\(\Leftrightarrow8x+16=0\)

\(\Leftrightarrow8\left(x+2\right)=0\)

\(\Leftrightarrow x=-2\left(ktm\right)\)

Vậy không có giá trị x thỏa mãn A=B

b.

\(A:B=\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}:\dfrac{-16}{\left(x-2\right)\left(x+2\right)}< 0\)

\(\Leftrightarrow\dfrac{x^2+4x+4-x^2+4x-4}{-16}< 0\)

\(\Leftrightarrow\dfrac{8x}{-16}< 0\)

\(\Leftrightarrow\dfrac{8x}{16}>0\)

\(\Leftrightarrow\dfrac{x}{2}>0\)

\(\Leftrightarrow x>0\)

 

 

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Lời giải:

Vì $x=9$ nên $x-9=0$
Ta có:

$F=(x^{2017}-9x^{2016})-(x^{2016}-9x^{2015})+(x^{2015}-9x^{2014})-....-(x^2-9x)+x-10$

$=x^{2016}(x-9)-x^{2015}(x-9)+x^{2014}(x-9)-....-x(x-9)+x-10$

$=x^{2016}.0-x^{2015}.0+x^{2014}.0-...-x.0+x-10$

$=x-10=9-10=-1$

hay dong nao di nao

14 tháng 4 2020

ngu thì câm

26 tháng 12 2021

a: \(A=4x^2-4x+1-4=\left(2x-1\right)^2-4>=-4\forall x\)

Dấu '=' xảy ra khi x=1/2

10 tháng 7 2018

\(A=\left(x+y\right).\left(x^2-xy+y^2\right)-\left(x-y\right).\left(x^2+xy+y^2\right)=\left(x^3+y^3\right)-\left(x^3-y^3\right)=2y^3\)

=> Biểu thức A phụ thuộc vào giá trị của y

10 tháng 7 2018

\(\left(x-1\right)^3+3x.\left(x-4\right)+1=0\Leftrightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\)

\(\Leftrightarrow x^3-9x=0\Leftrightarrow x.\left(x^2-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)