K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 7 2020

e/

\(y=5sinx+6cosx-7\)

\(=\sqrt{61}\left(\frac{5}{\sqrt{61}}sinx+\frac{6}{\sqrt{61}}cosx\right)-7\)

\(=\sqrt{61}\left(sinx.cosa+cosx.sina\right)-7\) (với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{5}{\sqrt{61}}\))

\(=\sqrt{61}.sin\left(x+a\right)-7\)

Do \(-1\le sin\left(x+a\right)\le1\Rightarrow7-\sqrt{61}\le y\le7+\sqrt{61}\)

\(y_{min}=7-\sqrt{61}\) khi \(sin\left(x+a\right)=-1\)

\(y_{max}=7+\sqrt{61}\) khi \(sin\left(x+a\right)=1\)

f/

\(y=2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)+3\)

\(=2sin\left(x+\frac{\pi}{3}\right)+3\)

\(\Rightarrow1\le y\le5\)

\(y_{min}=1\) khi \(sin\left(x+\frac{\pi}{3}\right)=-1\)

\(y_{max}=5\) khi \(x+\frac{\pi}{3}=1\)

NV
23 tháng 7 2020

c/

\(y=2\left(1-cos2x\right)+sin2x+cos2x\)

\(=sin2x-cos2x+2=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)+2\)

Do \(-1\le sin\left(2x-\frac{\pi}{4}\right)\le1\)

\(\Rightarrow2-\sqrt{2}\le y\le2+\sqrt{2}\)

\(y_{min}=2-\sqrt{2}\) khi \(sin\left(2x-\frac{\pi}{4}\right)=-1\)

\(y_{max}=2+\sqrt{2}\) khi \(sin\left(2x+\frac{\pi}{4}\right)=1\)

d/

\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=1-3sin^2x.cos^2x\)

\(=1-\frac{3}{4}sin^22x\)

\(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le y\le1\)

\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)

\(y_{max}=1\) khi \(sin2x=0\)

6 tháng 8 2021

1. Hàm số xác định `<=> 1-cosx \ne 0<=>cosx \ne 1<=>x \ne k2π`

Vì: `1+cosx >=0 forallx ; 1-cosx >=0 forall x`

2. Hàm số xác định `<=> sin^2x \ne cos^2x <=> (1-cos2x)/2 \ne (1+cos2x)/2`

`<=>cos2x \ne 0<=> 2x \ne π/2+kπ <=> x \ne π/4+kπ/2`

3. Hàm số xác định `<=> cos2x \ne 0<=> x \ne π/4+kπ/2 (k \in ZZ)`.

14 tháng 8 2021

Bạn cho mình hỏi tại sao x khác k2\(\pi\) là lý thuyết ở đoạn nào thế ạ?

NV
9 tháng 9 2020

e/

Đề câu này chắc chắn đúng chứ bạn?

f/

\(sin^4x+cos^4x=\frac{3}{4}\)

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=\frac{3}{4}\)

\(\Leftrightarrow1-\frac{1}{2}\left(2sinx.cosx\right)^2=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}-\frac{1}{2}sin^22x=0\)

\(\Leftrightarrow1-2sin^22x=0\)

\(\Leftrightarrow cos4x=0\)

\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)

NV
9 tháng 9 2020

c/

\(y=sin\left(4x-\frac{\pi}{3}\right)+sin\left(\frac{\pi}{3}\right)+5\)

\(=sin\left(4x-\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}+5\)

Do \(-1\le sin\left(4x-\frac{\pi}{3}\right)\le1\)

\(\Rightarrow4+\frac{\sqrt{3}}{2}\le y\le6+\frac{\sqrt{3}}{2}\)

d/

\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+3sin2x+5\)

\(y=6-3sin^2x.cos^2x+3sin2x\)

\(y=-\frac{3}{4}sin^22x+3sin2x+6\)

\(y=\frac{3}{4}\left(sin2x+1\right)\left(5-sin2x\right)+\frac{9}{4}\ge\frac{9}{4}\)

\(y_{min}=\frac{9}{4}\) khi \(sin2x=-1\)

\(y=\frac{3}{4}\left(sin2x-1\right)\left(3-sin2x\right)+\frac{33}{4}\le\frac{33}{4}\)

\(y_{max}=\frac{33}{4}\) khi \(sin2x=1\)

NV
6 tháng 8 2020

e/ Tử số đến đâu và mẫu số đến đâu bạn?

f/ Căn đến đâu bạn?

g/ Căn đến đâu bạn?

h/ \(y=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\)

\(=1-\frac{1}{2}\left(2sinx.cosx\right)^2=1-\frac{1}{2}sin^22x\)

Do \(0\le sin^22x\le1\Rightarrow\frac{1}{2}\le y\le1\)

\(y_{max}=1\) khi \(sin^22x=0\)

\(y_{min}=\frac{1}{2}\) khi \(sin^22x=1\)

t/ \(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(y=1-3sin^2x.cos^2x=1-\frac{3}{4}\left(2sinx.cosx\right)^2\)

\(y=1-\frac{3}{4}sin^22x\)

Tượng tự câu trên \(\Rightarrow\frac{1}{4}\le y\le1\)

\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)

\(y_{max}=1\) khi \(sin^22x=0\)

Tốt nhất là bạn sử dụng công cụ gõ công thức

NV
29 tháng 10 2020

1d.

Đề ko rõ

1e.

\(\Leftrightarrow\left(4cos^3x-3cosx\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(4cos^2x-3\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(2cos2x-1\right)^2cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left[\left(2cos2x-1\right)^2.cos2x-1\right]=0\)

\(\Leftrightarrow cos^2x\left(4cos^32x-4cos^22x+cos2x-1\right)=0\)

\(\Leftrightarrow cos^2x\left(cos2x-1\right)\left(4cos^22x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
29 tháng 10 2020

2b.

Đề thiếu

2c.

Nhận thấy \(cos2x=0\) ko phải nghiệm, chia 2 vế cho \(cos^32x\)

\(\frac{8sin^22x}{cos^22x}=\frac{\sqrt{3}sin2x}{cos2x}.\frac{1}{cos^22x}+\frac{1}{cos^22x}\)

\(\Leftrightarrow8tan^22x=\sqrt{3}tan2x\left(1+tan^22x\right)+1+tan^22x\)

\(\Leftrightarrow\sqrt{3}tan^32x-7tan^22x+\sqrt{3}tan2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1}{\sqrt{3}}\\tanx=\sqrt{3}-2\\tanx=\sqrt{3}+2\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
6 tháng 8 2021

a.

\(y=2\left(1-cos2x\right)-\dfrac{5}{2}sin2x+\dfrac{1}{2}+\dfrac{1}{2}cos2x+10\)

\(=-\dfrac{1}{2}\left(5sin2x+3cos2x\right)+\dfrac{25}{2}\)

\(=-\dfrac{\sqrt{34}}{2}\left(\dfrac{5}{\sqrt{34}}sin2x+\dfrac{3}{\sqrt{34}}cos2x\right)+\dfrac{25}{2}\)

Đặt \(\dfrac{5}{\sqrt{34}}=cosa\)

\(\Rightarrow y=-\dfrac{\sqrt{34}}{2}\left(sin2x.cosa+cos2x.sina\right)+\dfrac{25}{2}\)

\(=-\dfrac{\sqrt{34}}{2}sin\left(2x+a\right)+\dfrac{25}{2}\)

Do \(-1\le sin\left(2x+a\right)\le1\)

\(\Rightarrow\dfrac{25-\sqrt{34}}{2}\le y\le\dfrac{25+\sqrt{34}}{2}\)

NV
6 tháng 8 2021

b.

\(y=\dfrac{sin^2x-2sin2x+1}{3+sin^2x+2cos^2x}=\dfrac{2sin^2x-4sin2x+2}{6+2\left(sin^2x+cos^2x\right)+2cos^2x}\)

\(=\dfrac{1-cos2x-4sin2x+2}{8+1+cos2x}=\dfrac{3-4sin2x-cos2x}{9+cos2x}\)

\(\Rightarrow9y+y.cos2x=3-4sin2x-cos2x\)

\(\Rightarrow4sin2x+\left(y+1\right)cos2x=3-9y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(4^2+\left(y+1\right)^2\ge\left(3-9y\right)^2\)

\(\Leftrightarrow80y^2-56y-8\le0\)

\(\Rightarrow\dfrac{7-\sqrt{89}}{20}\le y\le\dfrac{7+\sqrt{89}}{20}\)