Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\cos\alpha=\dfrac{1}{2}\)
\(\tan\alpha=\sqrt{3}\)
\(\cot\alpha=\dfrac{\sqrt{3}}{3}\)
a)
Vẽ góc vuông xOy. Trên tia Ox, lấy điểm A sao cho OA = 2cm. Lấy A làm tâm, vẽ cung tròn bán kính 3cm sao cho cung tròn này cắt tia Oy tại B. Khi đó ∠OBA = α.
Thật vậy:
b)
Vẽ góc vuông xOy. Trên tia Ox lấy điểm P sao cho OP = 3cm. Lấy P làm tâm, vẽ cung tròn bán kính 5cm sao cho cung này cắt tia Oy tại Q. Khi đó ∠OPQ = α.
Thật vậy:
c)
Vẽ góc vuông xOy. Trên tia Ox lấy điểm A sao cho OA = 4(cm). Trên tia Oy lấy điểm B sao cho OB = 3cm. Khi đó ∠OAB = α.
Thật vậy:
d)
Vẽ góc vuông xOy. Trên tia Ox lấy điểm C sao cho OC = 3cm. Trên tia Oy lấy D sao cho OD = 2cm. Khi đó OCD = α.
Thật vậy:
Vì α là góc nhọn nên ta có sinα > 0.
Ta lại có: sin 2 α + cos 2 α = 1
Dựng một tam giác vuông ta có:
a, Độ dài cạnh góc vuông là 3, cạnh huyền là 5, góc đối diện với cạnh góc vuông đó là góc α
b, Độ dài cạnh góc vuông là 4, cạnh huyền là 7,góc giữa cạnh góc vuông và cạnh huyền đó là góc α
c, Độ dài hai cạnh góc vuông là 3 và 2, góc đối diện với cạnh góc vuông độ dài 3 là góc α
d, Độ dài hai cạnh góc vuông là 5 và 6, góc đối diện với cạnh góc vuông độ dài 6 là góc α
b)
Có: \(cot\alpha=\dfrac{cos\alpha}{sin\alpha}\)
Vì $\alpha $ là góc nhọn nên `0<sin\alpha<1`
\(\Rightarrow\dfrac{cos\alpha}{sin\alpha}>\dfrac{cos\alpha}{1}=cos\alpha\)
Vậy \(cos\alpha< cot\alpha\)
Cho α là góc nhọn, sinα = 1/2. Tính cosα; tanα; cotα
Ta có: sin 2 α + cos 2 α = 1
`sin α=cos α`
`<=> sinα : cosα = cosα : cosα`
`<=> tanα=1`
`<=>α=45^o`
Lời giải:
Xét tam giác $ABC$ vuông tại $A$ có $\widehat{B}=\alpha$
$\cos \alpha = \frac{AB}{BC}$
$\sin \alpha = \frac{AC}{BC}$
$\cos \alpha = \sin \alpha \Leftrightarrow AB=AC\Leftrightarrow ABC$ là tam giác vuông cân
$\Leftrightarrow \widehat{B}=\widehat{C}=45^0$
Vậy $\alpha = 45^0$