Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x^2-2x+1989}{x^2}\)
\(\Leftrightarrow Px^2=x^2-2x+1989\)
\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)
\(\Delta=4-4\left(1-P\right)1989\ge0\)
\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1989\)
Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989
2.E = 4x^2 - 12x
= ( 4x^2 - 12x + 9 ) -9
=(2x-3)^2 - 9 >= -9
<=> E >= -18
Dấu "=" xảy ra <=> 2x-3 = 0 <=> x=3/2
Vậy GTNN của E là E = -18 <=> x =3/2
Ta có : E = 2x2 - 6x
=> E = 2(x2 - 6x + 9 - 9)
=> E = 2(x2 - 6x + 9) - 18
=> E = 2(x - 3)2 - 18
Mà ; 2(x - 3)2 \(\ge0\forall x\)
Nên: E = 2(x - 3)2 - 18 \(\ge-18\forall x\)
Vậy Emin = -18 khi x = 3
\(T=x^2+2xy+2y^2-2x-2y-2\)
\(=\left(x^2+2xy+y^2-2x-2y+1\right)+y^2-3\)
\(=\left(x+y-1\right)^2+y^2-3\ge-3\)
Đẳng thức xảy ra khi \(\begin{cases}\left(x+y-1\right)^2=0\\y^2=0\end{cases}\)\(\Rightarrow\begin{cases}x+y-1=0\\y=0\end{cases}\)
\(\Rightarrow\begin{cases}x+0-1=0\\y=0\end{cases}\)\(\Rightarrow\begin{cases}x=1\\y=0\end{cases}\)
Vậy \(Min_T=-3\) khi \(\begin{cases}x=1\\y=0\end{cases}\)
ĐK : \(x\ne-2\)
ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)
\(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\)
vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)
=> \(A>=\frac{2}{3}\)
dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)
x^3+y^3=(x+y)^3-3xy(x+y)
=27-9xy
Mà (x+y)^2 lớn hơn hoặc bằng 4xy
=>9 lớn hơn hoặc bằng 4xy (x+y=3)
=>81/4 lớn hơn hoặc bằng 9xy (nhân 2 vế với 9/4)
Dấu "=" xảy ra khi x=y= căn 9/4 = 3/2
Vậy GTNN của biểu thức trên là 27 - 81/4 = 27/4 khi x=y=3/2
MÌnh nghĩ như vậy ko biết đúng ko???
\(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x^2+2.x.1+1^2\right)+4\)
\(=\left(x+1\right)^2+4\)
Vì \(\left(x+1\right)^2\ge0=>\left(x+1\right)^2+4\ge4\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x+1\right)^2=0< =>x=-1\)
Vậy minA=4 khi x=-1