Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x^2-2x+1989}{x^2}\)
\(\Leftrightarrow Px^2=x^2-2x+1989\)
\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)
\(\Delta=4-4\left(1-P\right)1989\ge0\)
\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1989\)
Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989
2.E = 4x^2 - 12x
= ( 4x^2 - 12x + 9 ) -9
=(2x-3)^2 - 9 >= -9
<=> E >= -18
Dấu "=" xảy ra <=> 2x-3 = 0 <=> x=3/2
Vậy GTNN của E là E = -18 <=> x =3/2
Ta có : E = 2x2 - 6x
=> E = 2(x2 - 6x + 9 - 9)
=> E = 2(x2 - 6x + 9) - 18
=> E = 2(x - 3)2 - 18
Mà ; 2(x - 3)2 \(\ge0\forall x\)
Nên: E = 2(x - 3)2 - 18 \(\ge-18\forall x\)
Vậy Emin = -18 khi x = 3
\(2x^2+10x-1\)
\(=2\left(x^2+5x-\frac{1}{2}\right)\)
\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)
\(=2\left(\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right)\)
\(=\frac{-27}{2}-2\left(x+\frac{5}{2}\right)^2\le\frac{-27}{2}\)
\(MinB=\frac{-27}{2}\Leftrightarrow x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)
ĐK : \(x\ne-2\)
ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)
\(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\)
vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)
=> \(A>=\frac{2}{3}\)
dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)