Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(1/2^2022)=1/2^2022+1/2^4044+...+1/2^(2022^2021)
=>2^2022*A=1+1/2^2022+...+1/2^(2022^2020)
=>A*(2^2022-1)=1-1/2^(2022^2021)
=>\(A=\dfrac{2^{2022^{2021}}-1}{2^{2022}-1}\)
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
1: \(M=0\)
mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)
nên x-2021=0 và 2021-y=0
=>x=2021 và y=2021
\(A\ge2020\forall x,y\)
Dấu '=' xảy ra khi x=-5 và y=2021
\(M=\left|x-2021\right|+\left|x-2020\right|=\left|2021-x\right|+\left|x-2020\right|\)
Ta có: \(\hept{\begin{cases}\left|2021-x\right|\ge2021-x\\\left|x-2020\right|\ge x-2020\end{cases}}\Rightarrow M\ge2021-x+x-2020=1\)
Dấu '' = '' xảy ra khi: \(\hept{\begin{cases}2021-x\ge0\\x-2020\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2021\\x\ge2020\end{cases}}\Rightarrow2020\le x\le2021\)
a) Thay \(a = - 4,b = 18\)vào đa thức ta có:
\(A = - 5a - b - 20 = - 5. - 4 - 18 - 20 = - 18\).
b) Thay \(x = - 1,y = 3,z = - 2\)vào đa thức ta có:
\(B = - 8xyz + 2xy + 16y = - 8. - 1.3. - 2 + 2. - 1.3 + 16.3 = - 48 - 6 + 48 = - 6\).
c) Thay \(x = - 2,y = - 3\)vào đa thức ta có:
\(C = - {x^{2021}}{y^2} + 9{x^{2021}} = - {( - 1)^{2021}}.{( - 3)^2} + 9.{( - 1)^{2021}} = - ( - 1).9 + 9.( - 1) = 9 + ( - 9) = 0\).
A