Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
Ta có: A = \(\frac{2012}{9-x}\) (x \(\inℤ\); x \(\ne\)9) (x = 9 thì mẫu = 0, vô lý)
Để A lớn nhất thì 9 - x nhỏ nhất và 9 - x > 0
=> 9 - x = 1
=> x = 9 - 1
=> x = 8
=> A = \(\frac{2012}{9-x}=\frac{2012}{1}=2012\)
Vậy A đạt GTLN khi A = 2012 với x = 8
Bài giải
Gỉa sử :
\(A=M=x+1=\frac{8-x}{x-3}\)
\(\Rightarrow\text{ }\left(8-x\right)\left(x+1\right)=\left(x-3\right)\)
\(8x+8-x^2-x=x-3\)
\(7x+8-x^2=x-3\)
\(7x+8-x^2-x=3\)
\(6x+8-x^2=3\)
\(x\left(x+6\right)=-5\)
\(\Rightarrow\text{ }x\inƯ\left(5\right)\) ( Nếu x thuộc Z hay N thì làm tiếp nhưng nếu không có thì mình làm được đến đây thôi ! )
Để P(x)=0 thì 2x-7+x-14=0
=>3x-21=0
hay x=7
Để Q(x)=0 thì (x-8)(x+8)=0
hay \(x\in\left\{8;-8\right\}\)