Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
M = - x2 - x - y2 - 3y + 13
4M = - 4x2 - 4x - 4y2 - 12y + 52
= - (2x + 1)2 - (2y + 3)2 + 42 \(\le\) 42
\(M\le\dfrac{21}{2}\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\) và \(y=-\dfrac{3}{2}\)
a, (x+2)(x+3)= x2+5x+6=(x2+2.x.5/2+25/4-1/4)=(x+5/2)2+1/4 >=1/4 <=> x+5/2=0 =>x=-5/2
\(a,A=3-4x-x^2\)
\(=-\left(x^2+4x+4\right)+7\)
\(=-\left(x+2\right)^2+7\)
Với mọi giá trị của x ta có:
\(\left(x+2\right)^2\ge0\Rightarrow-\left(x+2\right)^2\le0\)
\(\Rightarrow-\left(x+2\right)^2+7\le7\)
Vậy Max A = 7 khi \(x+2=0\Rightarrow x=-2\)
\(b,B=2x-x-3x^2=x-3x^2\)
\(=-3\left(x^2-\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{1}{12}\)
\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\)
Với mọi giá trị của x ta có:
\(\left(x-\dfrac{1}{6}\right)^2\ge0\Rightarrow-3\left(x-\dfrac{1}{6}\right)^2\le0\)
\(\Rightarrow-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\le\dfrac{1}{12}\)
Vậy Max B = \(\dfrac{1}{12}\) khi \(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)
\(c,C=2-x^2-y^2-2\left(x+y\right)=2-x^2-y^2-2x-2y\)\(=4-\left(x^2+2x+1\right)-\left(y^2+2y+1\right)\)
\(=4-\left(x+1\right)^2-\left(y+1\right)^2\)
Với mọi giá trị của x , ta có:
\(\left(x+1\right)^2\ge0;\left(y+1\right)^2\ge0\)
\(\Rightarrow4-\left(x+1\right)^2-\left(y+1\right)^2\le4\)
Vậy Max C = 4 khi \(\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)
\(d,D=-x^2+4x-9=-\left(x^2-4x+4\right)-5\) \(=-\left(x-2\right)^2-5\)
Với mọi giá trị của x ta có:
\(\left(x-2\right)^2\ge0\Rightarrow-\left(x-2\right)^2\le0\)
\(\Rightarrow-\left(x-2\right)^2-5\le-5\)
Vậy Max D = -5 khi \(x-2=0\Rightarrow x=2\)
\(e,E=-x^2+4x-y^2-12y+47\)
\(=-\left(x^2-4x+4\right)-\left(y^2+12y+36\right)+87\)
\(=-\left(x-2\right)^2-\left(y+6\right)^2+87\)
Với mọi giá trị của x ta có:
\(-\left(x-2\right)^2\le0;-\left(y+6\right)\le0\)
\(\Rightarrow-\left(x-2\right)^2-\left(y+6\right)^2+87\le87\)
Vậy Max E = 87
Để E = 87 thì \(\left\{{}\begin{matrix}x-2=0\\y+6=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-6\end{matrix}\right.\)
\(f,F=-x^2-x-y^2-3y+13\)
\(=-\left(x^2+x+\dfrac{1}{4}\right)-\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{31}{2}\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\left(y+\dfrac{3}{2}\right)^2+\dfrac{31}{2}\)
Với mọi giá trị của x ta có:
\(-\left(x+\dfrac{1}{2}\right)^2\le0;-\left(y+\dfrac{3}{2}\right)^2\le0\)
\(\Rightarrow-\left(x+\dfrac{1}{2}\right)^2-\left(y+\dfrac{3}{2}\right)^2+\dfrac{31}{2}\le\dfrac{31}{2}\)
Vậy Max F = \(\dfrac{31}{2}\) khi \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\y+\dfrac{3}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a: Sửa đề: \(-x^2+4x-y^2-12y+47\)
\(=-\left(x^2-4x+y^2+12y-47\right)\)
\(=-\left(x^2-4x+4+y^2+12y+36-87\right)\)
\(=-\left(x-2\right)^2-\left(y+6\right)^2+87< =87\)
Dấu '=' xảy ra khi x=2 và y=-6
b: \(-x^2-x-y^2-3y+13\)
\(=-\left(x^2+x+y^2+3y-13\right)\)
\(=-\left(x^2+x+\dfrac{1}{4}+y^2+3y+\dfrac{9}{4}-\dfrac{91}{5}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\left(y+\dfrac{3}{2}\right)^2+\dfrac{91}{5}\le\dfrac{91}{5}\)
Dấu '=' xảy ra khi x=-1/2 và y=-3/2
e, \(-x^2+4x+y^2-12y+47\)
\(=-\left(x^2-4x-y^2+12y-47\right)\)
\(=-\left[x^2-4x+4-\left(y^2-12y+36\right)-15\right]\)
\(=-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2-\left(y-6\right)^2-15\ge-15\)
\(\Rightarrow-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\le15\)
Để \(-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]=15\) thì
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-6\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy..................
Các câu còn lại tương tự!
Chúc bạn học tốt!!!
d)\(-x^2-5x+11\)
=\(-\left(x^2+5x-11\right)\)
=\(-\left(x+\dfrac{5}{2}\right)^2+\dfrac{69}{4}\)
Với mọi x thì \(\dfrac{69}{4}-\left(x+\dfrac{5}{2}\right)^2=< \dfrac{69}{4}\)
Để \(\dfrac{69}{4}-\left(x+\dfrac{5}{2}\right)^2=\dfrac{69}{4}\) thì
\(\left(x+\dfrac{5}{2}\right)^2=0\)
=>\(x+\dfrac{5}{2}=0\)
=>\(x=-\dfrac{5}{2}\)
Vậy...
Các câu sau t ương tự
a. \(-x^2+4x+y^2-12y+47\)
\(=-\left(x^2-4x-y^2+17y-47\right)\)
\(=-\left[x^2-4x+4-\left(y^2-12y+36\right)-15\right]\)
\(=-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\)
Vì \(\left(x-2\right)^2-\left(y-6\right)^2-15\ge-15\forall x\)
\(\Rightarrow-\left[\left(x-2\right)^2-\left(y-6\right)^2-15\right]\le15\)
Vậy GTLN của bt trên là 15 \(\Leftrightarrow x=2;y=6\)
b. \(-x^2-x-y^2-3y+13\)
\(=\frac{1}{4}\left(-4x^2-4x-4y^2-12y+52\right)\)
\(=\frac{1}{4}\left[-\left(2x+1\right)^2-\left(2y+3\right)^2+42\right]\)
Vì \(\frac{1}{4}\left[-\left(2x+1\right)^2-\left(2y+3\right)^2+42\right]\le42\forall x;y\)
\(\Rightarrow-\left(2x+1\right)^2-\left(2y+3\right)^2+42\le\frac{21}{2}\forall x;y\)
Vậy GTLN của bt trên là 21/2 \(\Leftrightarrow x=-\frac{1}{2};y=-\frac{3}{2}\)