K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2015

\(\frac{x-2}{3}+\frac{x-2}{3.5}+\frac{x-2}{5.7}+...+\frac{x-2}{97.99}=\frac{-49}{99}\)

<=>\(\left(x-2\right)\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)=-\frac{49}{99}\)

<=>\(\left(x-2\right)\cdot\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)=-\frac{49}{99}\)

<=>\(\left(x-2\right)\cdot\frac{1}{2}\cdot\left(1-\frac{1}{99}\right)=-\frac{49}{99}\)

<=>\(\left(x-2\right)\cdot\frac{49}{99}=-\frac{49}{99}\)

<=>x-2=-1

<=>x=1

9 tháng 10 2018

Bài 1:

\(\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)

\(=2\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=2\left(\frac{1}{3}-\frac{1}{99}\right)\)

\(=2.\frac{32}{99}=\frac{64}{99}\)

Bài 2:

a) \(2.4^x-18=110\)

\(\Leftrightarrow2.4^x=128\)

\(\Leftrightarrow4^x=64\)

\(\Leftrightarrow4^x=4^3\Leftrightarrow x=3\)

Vậy x = 3

b) \(\left(\frac{3}{2}x-1\right)^5=1\)

\(\Leftrightarrow\frac{3}{2}x-1=1\)

\(\Leftrightarrow\frac{3}{2}x=2\)

\(\Leftrightarrow x=\frac{4}{3}\)

Vậy \(x=\frac{4}{3}\)

9 tháng 10 2018

a) 4/3.5 + 3/5.7 + .... + 4/97.99

= 4( 1/3.5 +1/5.7 + ... + 1/97.99 )

= 4 . 1/2 . 2 ( 1/3.5 +1/5.7 + ... + 1/97.99 )

= 4/2 ( 2/3.5 + 2/5.7 + .... + 2/97.99 )

= 2 ( 5-3/3.5 + 7-5/5.7 + ..... + 99-97/97.99 )

= 2 (5/3.5 - 3/3.5 + 7/5.7 - 5/5.7 + .... + 99/97.99 - 97/97.99 )

= 2 ( 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/97 - 1/99 )

= 2 ( 1/3 -1/99 )

= 2 (33/99 - 1/99 )

= 2 . 32/99

= 32.2/99

=64/99

1 tháng 6 2016

Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2x-1\right)\left(2x+1\right)}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{\left(2x-1\right)\left(2x+1\right)}\) 

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{\left(2x-1\right)}-\frac{1}{\left(2x+1\right)}\)

\(2A=1-\frac{1}{2x+1}=\frac{2x}{2x+1}\)

\(A=\frac{x}{2x+1}\) 

Mà \(A=\frac{49}{99}\) \(\Leftrightarrow\frac{x}{2x+1}=\frac{49}{99}\Leftrightarrow x=49\)

18 tháng 11 2016

x=49

13 tháng 3 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)

\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)

\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)

13 tháng 3 2019

3/\(7a+b=0\Rightarrow b=-7a\)

\(f\left(x\right)=ax^2-7ax+c\).Ta có: \(f\left(10\right)=100a-70a+c=30a+c\)

\(f\left(-3\right)=30a+c\).Nhân theo vế ta có đpcm:

\(f\left(10\right).f\left(-3\right)=\left(30a+c\right)^2\ge0\) (đúng)

1 tháng 5 2016

\(\frac{2}{3.5}+\frac{2}{5.7}+.................+\frac{2}{97.99}\)

=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..................+\frac{1}{97}-\frac{1}{99}\)

=\(\frac{1}{3}-\frac{1}{99}\)

=\(\frac{32}{99}\)

1 tháng 5 2016

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{32}{99}\)

29 tháng 12 2016

A\(A=\frac{1}{1.3}+..+\frac{1}{x\left(x+1\right)}\)

\(2A=\frac{1}{1}-\frac{1}{\left(x+1\right)}\)

\(A=\frac{x}{2.\left(x+1\right)}=\frac{8}{17}=\frac{16}{2.17}\)

X=16

12 tháng 4 2017

17 - 1= 16

= > x = 16

 tk mình nha

19 tháng 12 2015

=> \(2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{16}{34}\)

=>\(2.\left(1-\frac{1}{x+2}\right)=\frac{16}{34}\)

=>\(1-\frac{1}{x+2}=\frac{4}{17}\)

=> \(\frac{1}{x+2}=\frac{13}{17}\)

=>\(x=-\frac{9}{13}\)

13 tháng 1 2017

\(a.\)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right).\left(2x+1\right)}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{2x+1}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{x}{2x+1}=\frac{49}{99}\)

\(\Rightarrow99x=49.\left(2x+1\right)\)

\(\Rightarrow99x=98x+49\)

\(\Rightarrow x=49\)

Vậy : \(x=49\)

\(b.\)

\(1-3+3^2-3^3+...+\left(-3^x\right)=\frac{1-9^{1006}}{4}\)

Đặt \(A=1-3+3^2-3^3+...+\left(-3^x\right)\)

\(\Rightarrow3A=3-3^2+3^3-3^4+...+\left(-3^{x+1}\right)\)

\(\Rightarrow3A+A=1+\left(-3^{x+1}\right)\)

\(\Rightarrow4A=1+\left(-3^{x+1}\right)\)

\(\Rightarrow A=\frac{1+\left(-3^{x+1}\right)}{4}\)

\(\Rightarrow\frac{1+\left(-3^{x+1}\right)}{4}=\frac{1-9^{1006}}{4}\)

\(\Rightarrow-3^{x+1}=-9^{1006}\)

\(\Rightarrow-3^{x+1}=-3^{2012}\)

\(\Rightarrow x+1=2012\)

\(\Rightarrow x=2012-1\)

\(\Rightarrow x=2011\)

Vậy : \(x=2011\)