K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

Gấp nha,gấp nha!!

24 tháng 11 2017

f(x) = (x^1994+x^1993+x^1992) - (x^1992-1)

     = x^1992.(x^2+x+1)-(x^1992-1)

Vì x^2+x+1 chia hết cho x^2+x+1 nên x^1992 .(x^2+x+1) chia hết cho x^2+x+1

Lại có : x^1992-1 = (x^3)^664 - 1^664 chia hết cho x^3-1 = (x-1).(x^2+x+1)

=> x^1992-1 chia hết cho x^2+x+1

=> f(x) chia hết cho x^2+x+1

=> dư trong phép chia trên là 0 

k mk nha

3 tháng 8 2018

f(x) = (x^1994+x^1993+x^1992) - (x^1992-1)

     = x^1992.(x^2+x+1)-(x^1992-1)

Vì x^2+x+1 chia hết cho x^2+x+1 nên x^1992 .(x^2+x+1) chia hết cho x^2+x+1

Lại có : x^1992-1 = (x^3)^664 - 1^664 chia hết cho x^3-1 = (x-1).(x^2+x+1)

=> x^1992-1 chia hết cho x^2+x+1

=> f(x) chia hết cho x^2+x+1

=> dư trong phép chia trên là 0 

7 tháng 9 2016

em ngu vc 

8 tháng 9 2016

k khó khăn j chỉ đơn giản là chia đa thức: 

dư -x1992 +1

18 tháng 7 2018

to cho nick

5 tháng 7 2018

ai choi bb2 thi kb va k dung cho mik

1 tháng 2 2017

Áp dụng định lý Bê-du; ta tìm được số dư là :

\(1^{1994}+1^{1993}+1=3\)

Vậy ...

11 tháng 2 2020

\(f\left(x\right)=x^{1992}.\left(x^2+x+1\right)-\left(x^{1992}-1\right)\)

\(x^{1992}.\left(x^2+x+1\right)⋮x^2+x+1\) Ta xét x^1992-1

Có \(x^{1992}-1=\left(x^3\right)^{664}-1^{664}⋮x^3-1=\left(x-1\right)\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\)

Vậy dư của phép chia trên là 0000000