Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = (x^1994+x^1993+x^1992) - (x^1992-1)
= x^1992.(x^2+x+1)-(x^1992-1)
Vì x^2+x+1 chia hết cho x^2+x+1 nên x^1992 .(x^2+x+1) chia hết cho x^2+x+1
Lại có : x^1992-1 = (x^3)^664 - 1^664 chia hết cho x^3-1 = (x-1).(x^2+x+1)
=> x^1992-1 chia hết cho x^2+x+1
=> f(x) chia hết cho x^2+x+1
=> dư trong phép chia trên là 0
k mk nha
f(x) = (x^1994+x^1993+x^1992) - (x^1992-1)
= x^1992.(x^2+x+1)-(x^1992-1)
Vì x^2+x+1 chia hết cho x^2+x+1 nên x^1992 .(x^2+x+1) chia hết cho x^2+x+1
Lại có : x^1992-1 = (x^3)^664 - 1^664 chia hết cho x^3-1 = (x-1).(x^2+x+1)
=> x^1992-1 chia hết cho x^2+x+1
=> f(x) chia hết cho x^2+x+1
=> dư trong phép chia trên là 0
Áp dụng định lý Bê-du; ta tìm được số dư là :
\(1^{1994}+1^{1993}+1=3\)
Vậy ...
\(f\left(x\right)=x^{1992}.\left(x^2+x+1\right)-\left(x^{1992}-1\right)\)
\(x^{1992}.\left(x^2+x+1\right)⋮x^2+x+1\) Ta xét x^1992-1
Có \(x^{1992}-1=\left(x^3\right)^{664}-1^{664}⋮x^3-1=\left(x-1\right)\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\)
Vậy dư của phép chia trên là 0000000