Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x² + 5y² + 2y - 4xy - 3 = 0
<=> x² - 4xy + 4y² + y² + 2y + 1 - 4 = 0
<=> (x - 2y)² + (y + 1)² = 4 (*)
VÌ (x -2y)², (y+1)² là các số chính phương nên (*) chỉ có các khã năng:
* KN1:
{(x-2y)² = 0
{(y+1)² = 4
<=> x = 2y và y+1 = ±2 => x = 2y và y = -3 (do ta chọn y nhỏ nhất nên loại y = 1)
=> x = -6 và y = -3
* KN2:
{(x-2y)² = 4
{y+1)² = 0
<=> x - 2y = ±2 và y = -1 > -3 tức là ta chọn nghiêm y = -3 mới nhỏ nhất
Vậy cặp (x, y) cần tìm là: x = -6; y = -3
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
#) Giải :
y( x -2) + 3x - 6 = 0
y( x - 2) + 3( x - 2) = 0
( y + 3 )( x - 2) = 0
\(\Rightarrow\orbr{\begin{cases}y+3=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=-3\\x=2\end{cases}}\)
Mk cx hoq chak đâu ạ :33
#) Giải :
b) xy + 3x - 2y - 7 = 0
xy + 3x - 2y - 6 = 1
x( y + 3) -2(y + 3) = 1
( x-2)( y+3) = 1
Ta có bảng sau :
x - 2 -1 1
y+ 3 -1 1
x 1 3
y -4 -2
Vậy ( x;y) thuộc {(1;3);(-4;-2)}
Chúc bn hok tốt ạ :33
Sửa đề: Tìm cặp \(x,y\in Z\) thỏa mãn \(x^2+3xy+2y^2+3x+6y-4=0\).
\(x^2+3xy+2y^2+3x+6y-4=0\)
\(\Leftrightarrow x^2+2xy+xy+2y^2+3x+6y=4\)
\(\Leftrightarrow\left(x^2+2xy\right)+\left(xy+2y^2\right)+\left(3x+6y\right)=4\)
\(\Leftrightarrow x\left(x+2y\right)+y\left(x+2y\right)+3\left(x+2y\right)=4\)
\(\Leftrightarrow\left(x+2y\right)\left(x+y+3\right)=4\)
Vì \(x,y\in Z\Rightarrow\left(x+2y\right)\left(x+y+3\right)\in Z\)
Trường hợp 1: \(\left\{{}\begin{matrix}x+2y=1\\x+y+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\) (thỏa mãn)
Trường hợp 2: \(\left\{{}\begin{matrix}x+2y=4\\x+y+3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=6\end{matrix}\right.\) (thỏa mãn)
Trường hợp 3: \(\left\{{}\begin{matrix}x+2y=2\\x+y+3=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\) (thỏa mãn)
Trường hợp 4: \(\left\{{}\begin{matrix}x+2y=-2\\x+y+3=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=3\end{matrix}\right.\) (thỏa mãn)
Vậy: \(\left(x,y\right)=\left[\left(1;0\right),\left(-8;6\right),\left(-4;3\right),\left(-8;3\right)\right]\)
đúng ko thế ạ