Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x-1).y = -12<=> 3x-1 và y là Ư của -12 ={ 1;2;3;4;6;12∓1;2;3;4;6;12 }
=> ta xét từng trường hợp : ....
1. (3x-1)y=-12 suy ra \(3x-1\inƯ\left(-12\right)\)(em tự liệt kê nhé!)
Lại có 3x-1 chia 3 dư 2(thiếu 1) nên \(3x-1\in\left\{-1;2;-4;\right\}\)
Đến đây em lập bảng và tìm đáp số nhé!
2. \(5xy+5x+2y=-16\Rightarrow5x\left(y+1\right)+2y=-16\)
\(\Rightarrow5x\left(y+1\right)+2\left(y+1\right)=-16+2=-14\)
\(\Rightarrow\left(5x+2\right)\left(y+1\right)=14\)
\(\Rightarrow5x+2\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)mà 5x+2 lẻ nên \(5x+2\in\left\{\pm1;\pm7\right\}\)
Đến đây em hãy lập bảng và tìm ra đáp số nhé!
Chúc em học tốt
a.
xy + 3x - 2y - 6 = 5
=>x(y + 3) - 2(y + 3) = 5
=>(x - 2)(y + 3) = 5.
Vì x, y thuộc Z nên x - 2, y + 3 thuộc Z
=> x - 2, y + 3 thuộc ước nguyên của 5
Lập bảng :
x - 2 | -5 | -1 | 1 | 5 |
y + 3 | -1 | -5 | 5 | 1 |
x | -3 | 1 | 3 | 7 |
y | -4 | -8 | 2 | -2 |
Vậy ......
b. Làm tương tự câu a.
c. Ta có x + y = 3 và x - y = 15
Bài này là tổng hiệu của cấp 1, áp dụng cách làm đó thì ta được số lớn là x = (3 + 15) : 2 = 9
Số bé là y = 9 - 15 = -6
d. Ta có : |x| + |y| = 1
=>|x| = 1 - |y|
Vì |x|, |y| >= 0 và |x| = 1 - |y| nên 0 =< |x|, |y| =< 1
Vì x, y thuộc Z nên x = 0 thì y = 1 hoặc -1 và ngược lại y = 0 thì x = 1 hoặc -1
Ta có :
\(\left|15-3x\right|+\left|5x-2y+7\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}15-3x=0\\5x-2y+7=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=5\\5.5-2y+7=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=5\\y=16\end{cases}}\)
Vậy x = 5; y = 16
a) ( x - 1 ) . ( y + 2 ) = 7
Lập bảng ta có :
x-1 | 1 | 7 | -1 | -7 |
y+2 | 7 | 1 | -7 | -1 |
x | 2 | 8 | 0 | -6 |
y | 5 | -1 | -8 | -3 |
b) x . ( y - 3 ) = -12
Lập bảng ta có :
y-3 | 12 | -12 | 2 | -2 | -3 | -4 |
x | -1 | 1 | -6 | 6 | 4 | 3 |
y | 15 | -9 | 5 | 1 | 0 | -1 |
c) xy - 3x - y = 0
x . ( y - 3 ) - y = 0
x . ( y - 3 ) - y + 3 = 3
x . ( y - 3 ) - ( y - 3 ) = 3
( x - 1 ) . ( y - 3 ) = 3
Lập bảng ta có :
x-1 | 3 | 1 | -1 | -3 |
y-3 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | 4 | 6 | 0 | 2 |
d) xy + 2x + 2y = -16
x . ( y + 2 ) + 2y = -16
x . ( y + 2 ) + 2y + 4 = -12
x . ( y + 2 ) + 2 . ( y + 2 ) = -12
( x + 2 ) . ( y + 2 ) = -12
Lập bảng ta có :
x+2 | 1 | -1 | -2 | -6 | -4 | -3 |
y+2 | -12 | 12 | 6 | 2 | 3 | 4 |
x | -1 | -3 | -4 | -8 | -6 | -5 |
y | -14 | 10 | 4 | 0 | 1 | 2 |
Ta có : (x - 1).(y + 2) = 7
=> (x - 1) và y + 2 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
x - 1 | -7 | -1 | 1 | 7 |
y + 2 | -1 | -7 | 7 | 1 |
x | -6 | 0 | 2 | 8 |
y | -3 | -9 | 5 | -1 |
Vậy có 4 cặp x;y thoả mãn : (-6,-3) ; (0 , -9) ; (2 , 5) ; (8, -1)
\(6xy-3x+2y=13\)
\(\Leftrightarrow6xy-3x+2y-1=12\)
\(\Leftrightarrow3x\left(2y-1\right)+2y-1=12\)
\(\Leftrightarrow\left(3x+1\right)\left(2y-1\right)=12\)
Mặt khác \(2y-1\) luôn lẻ nên ta chỉ cần xét các cặp ước \(\left(12;1\right);\left(4;3\right);\left(-12;-1\right);\left(-4;-3\right)\)
3x+1 | -12 | -4 | 4 | 12 |
2y-1 | -1 | -3 | 3 | 1 |
x | -13/3 | -5/3 | 1 | 11/3 |
y | 0 | -1 | 2 | 1 |
Vậy có đúng 1 cặp số nguyên thỏa mãn đề bài là \(\left(x;y\right)=\left(1;2\right)\)
\(\left(3x-5\right)⋮\left(x+2\right)\)
\(\Rightarrow3.\left(x+2\right)-11⋮\left(x+2\right)\)
Vì \(3.\left(x+2\right)⋮\left(x+2\right)\)
\(\Rightarrow11⋮\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự lập bảng :) T lười qá
(3x-1).y = -12<=> 3x-1 và y là Ư của -12 ={ \(\mp1;2;3;4;6;12\) }=> ta xét từng trường hợp : ....
giú mình với
xy+3x-1y =22