Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Lời giải:
$\frac{x}{9}-\frac{3}{y}=\frac{1}{8}$
$\Rightarrow \frac{xy-27}{9y}=\frac{1}{8}$
$\Rightarrow 8(xy-27)=9y$
$\Rightarrow 8xy-216 = 9y$
$\Rightarrow 8xy=9y+216\vdots 9$
$\Rightarrow x\vdots 9$ hoặc $y\vdots 9$
Nếu $x\vdots 9$. Đặt $x=9x_1$ với $x_1$ nguyên. Khi đó:
$72x_1y-216=9y$
$\Rightarrow 8x_1y-24=y$
$\Rightarrow y\vdots 8$. Đặt $y=8y_1$
$\Rightarrow 64x_1y_1-24=8y_1$
$\Rightarrow 8x_1y_1-3=y_1$
$\Rightarrow y_1(8x_1-1)=3$
Xét các TH:
TH1: $y_1=1, 8x_1-1=3\Rightarrow x_1=\frac{1}{2}$ (loại)
TH2: $y_1=-1, 8x_1-1=-3\Rightarrow x_1=\frac{-1}{4}$ (loại)
TH3: $y_1=3, 8x_1-1=1\Rightarrow x_1=\frac{1}{4}$ (loại)
TH4: $y_1=-3, 8x_1-1=-1\Rightarrow y_1=-3; x_1=0$
$\Rightarrow x=0; y=-24$
Nếu $y\vdots 9$. Đặt $y=9y_1$ với $y_1$ nguyên. Khi đó:
$72xy_1=81y_1+216$
$\Rightarrow 8xy_1=9y_1+24$
$\Rightarrow 9y_1=8xy_1-24\vdots 8$
$\Rightarrow y_1\vdots 8\Rightarrow y_1=8y_2$ với $y_2$ nguyên.
Khi đó:
$64xy_2=72y_2+24$
$\Rightarrow 8xy_2=9y_2+3$
$y_2(8x-9)=3$
Xét các TH:
$y_2=1, 8x-9=3\Rightarrow x=\frac{12}{8}$ (loại)
$y_2=-1, 8x-9=-3\Rightarrow x=\frac{6}{8}$ (loại)
$y_2=-3, 8x-9=-1\Rightarrow y_2=-3; x=1\Rightarrow y=-216; x=1$
$y_2=3, 8x-9=1\Rightarrow x=\frac{10}{8}$ (loại)
Vậy.........