K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét x=0⇒1+2019y=2020z⇒y=1, z=1

Xét x≠0⇒2018x+2019y là số lẻ≠2020z

26 tháng 12 2018

Với \(x\ne y\ne z\ne0\).Ta có: Do VT luôn luôn là số lẻ mà VP luôn luôn là số chẵn(Vô Lý)

Với \(x=0\)\(\Rightarrow1+2019^y=2020^z\)

\(\Rightarrow y=1,z=1\)

Lần lượt thử các trường hợp voiứ y=0,z=0

26 tháng 12 2018

Sai bét CMNR:

CÔng nhận 

anh là.....

xét có TH đó

+) 1/2018^x+2019^y=1/2020^z

26 tháng 12 2018

chúc thi tốt

26 tháng 12 2018

Cảm mơn

8 tháng 1 2019

Xét:

+)z=0=>2020z=1

Mà: 2018x+2019y=2 (vì x,y,z E N)  (loại)

+)z >= 1

=> 2020z chẵn

mà 2019z luôn lẻ => 2018x lẻ=>x=0

=> z=1

Vậy: x=0,z=1,y=1

15 tháng 1 2019

2018x + 2019y = 2020z

TH1 : x = 0 => 20180 + 2019y = 2020z

                 => 1 + 2019y = 2020z

=> y = 1 ; z = 1

TH2 : y = 0 => 2018x + 20190 = 2020z

                 => 2018x + 1 = 2020z

Vế trái là số lẻ khi x > 1

Vế phải là số chẵn khi x > 1

=> TH2 bị loại

TH3 : x,y,z khác 0

=> 2018x + 2019y là số lẻ

     2020z là số chẵn 

=> TH3 bị loại

Vậy x = 0 ; y = 1 ; z = 1

23 tháng 1 2020

Giả sử có các số nguyên x,y,z sao cho \(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019^{2020}\)

\(\Leftrightarrow\left|x-y\right|+\left|y-z\right|+\left|z-x\right|+x-x+y-y+z-z=2019^{2020}\)

\(\Leftrightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x=2019^{2020}\)

Ta sẽ chứng minh: \(\left|a\right|+a\)luôn chẵn với mọi a

+) Nếu \(a\ge0\Rightarrow\left|a\right|=a\Rightarrow\left|a\right|+a=2a\left(Đ\right)\)

+) Nếu \(a< 0\Rightarrow\left|a\right|=-a\Rightarrow\left|a\right|+a=0\left(Đ\right)\)

Vậy \(\left|x-y\right|+x-y,\left|y-z\right|+y-z,\left|z-x\right|+z-x\)luôn chẵn

\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x\)luôn chẵn

Mà \(2019^{2020}\)lẻ nên điều quả sử là sai

Vậy không có x,y,z nguyên để \(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019^{2020}\)

19 tháng 3 2022

pt tương đương \(\left|y-2020\right|=2^x-y+4039\) (*)

TH1: y\(\ge\)2020

pt (*) trở thành: 2y - 6059 = \(2^x\) (1)

Do 2y chẵn , 6059 lẻ => 2y - 6059 là số lẻ => \(2^x\)lẻ => x=0

Thay x =0 vào (1) tìm được y = 3030 (tm)

TH2: y \(\le\)2020

pt (*) trở thành: 2019= \(-2^x\)

=> Ko có x thỏa mãn

Vậy (x;y) = (0;3030)

19 tháng 3 2022

cảm ơn bạn