Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)
\(\Leftrightarrow\left(x+y^2\right)+7.\left(x+y\right)+\dfrac{49}{4}+y^2-\dfrac{9}{4}=0\)
\(\Leftrightarrow\left(x+y+\dfrac{7}{2}^2\right)=\dfrac{9}{4}-y^2\)
\(Do\left(x+y+\dfrac{7}{2}^2\right)\ge0\Rightarrow\dfrac{9}{4}-y^2\ge0\Rightarrow y^2\le\dfrac{9}{4}\)
Mà y nguyên \(\Rightarrow\left\{{}\begin{matrix}y^2\\\\y^2=1\end{matrix}\right.=0\)
Thay vào phương trình đầu:
Với \(y=0\Rightarrow x^2+7x+10=0\Rightarrow\left\{{}\begin{matrix}x=-2\\\\\\x=-5\end{matrix}\right.\)
Với \(y=1\Rightarrow x^2+9x+19=0\Rightarrow\) không có x nguyên
Với \(y=-1\Rightarrow x^2+5x+5=0\Rightarrow\) không có x nguyên
\(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=0\)
<=> \(x^2y^2+\left(x+2y-4\right)^2-2\left(x-2\right)\left(2y-2\right)-2xy\left(x+2y-4\right)=0\)
<=> \(\left[x^2y^2-2xy\left(x+2y-4\right)+\left(x+2y-4\right)^2\right]-4\left(xy-x-2y+2\right)=0\)
<=> \(\left(xy-x-2y+4\right)^2-4\left(xy-x-2y+4\right)+8=0\)
<=> \(\left(xy-x-2y+2\right)^2+4=0\)(vô nghiệm)
=>phương trình vô nghiệm
Lời giải:
Không mất tính tổng quát. Giả sử \(x\geq y\Rightarrow 2x\geq 2017\Rightarrow x\geq 1009\) (do \(x\) nguyên dương)
Thực hiện biến đổi P
\(P=x(x^2+y)+y(y^2+x)=(x^3+y^3)+2xy\)
\(\Leftrightarrow P=(x+y)(x^2-xy+y^2)+2xy\)
\(\Leftrightarrow P=2017(x^2-xy+y^2)+2xy=2017(x+y)^2-6049xy\)
\(\Leftrightarrow P=2017^3-6049xy=2017^3-6049x(2017-x)\)
\(\Leftrightarrow P=6049x^2-6049.2017xy+2017^3\)
Tìm max:
Tiếp tục biến đổi :\(P=6049(x-1)(x-2016)+2017^3-2016.6049\)
Vì \(x\) nguyên dương \(\Rightarrow x\geq 1\)
\(y\geq 1\Rightarrow x=2017-y\leq 2016\)
Do đó \((x-1)(x-2016)\leq 0\Rightarrow P\leq 2017^3-2016.6049\)
Vậy \((Max) P=2017^3-2016.6049\Leftrightarrow (x,y)=(2016,1)\) và hoán vị
Tìm min:
Biến đổi \(P=6049(x-1008)(x-1009)+2017^3-1008.1009.6049\)
Vì \(x\geq 1009\Rightarrow (x-1008)(x-1009)\geq 0\), do đó \(P\geq 2017^3-1008.1009.6049\)
Vậy \((Min)P=2017^3-6049.1008.1009\Leftrightarrow (x,y)=(1009,1008)\) và hoán vị.
Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô
\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)
\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)
\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)
\(\Leftrightarrow x^2-y-xy+x=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)
+) x = -1 suy ra y = 1
+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)
\(\left(y+2\right)x^{2017}-y^2-2y-1=0\)
\(\Leftrightarrow x^{2017}=\frac{y^2+2y+1}{y+2}\)
\(\Leftrightarrow x^{2017}=y+\frac{1}{y+2}\)
Để vế phải là số nguyên thì y+2 phải là ước của 1
\(\Leftrightarrow\orbr{\begin{cases}y+2=-1\\y+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=-3\\y=-1\end{cases}}\)
TH1: \(y=-3\Rightarrow x^{2017}=-4\)
Ta thấy x không phải là số nguyên
TH2: \(y=-1\Rightarrow x^{2017}=0\Rightarrow x=0\)
Vậy phương trình có cặp nghiệm (x,y) nguyên thỏa mãn là (0;-1)