Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: xy=x-y
=>xy-x+y=0
=>xy-x+y-1=-1
=>x(y-1)+(y-1)=-1
=>(x+1)(y-1)=-1
=>\(\left(x+1\right)\left(y-1\right)=1\cdot\left(-1\right)=\left(-1\right)\cdot1\)
=>\(\left(x+1;y-1\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;0\right);\left(-2;2\right)\right\}\)
b: x(y+2)+y=1
=>\(x\left(y+2\right)+y+2=3\)
=>\(\left(x+1\right)\left(y+2\right)=3\)
=>\(\left(x+1\right)\cdot\left(y+2\right)=1\cdot3=3\cdot1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)
=>\(\left(x+1;y+2\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;1\right);\left(2;-1\right);\left(-2;-5\right);\left(-4;-3\right)\right\}\)
a) Ta có: (x+1)(y-2)=-2
nên x+1; y-2 là các ước của -2
Trường hợp 1:
\(\left\{{}\begin{matrix}x+1=-1\\y-2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x+1=2\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x+1=-2\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x+1=1\\y-2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy: (x,y)\(\in\){(-2;4);(1;1);(-3;3);(0;0)}
b) Ta có: (x+1)(xy-1)=3
nên x+1;xy-1 là các ước của 3
Trường hợp 1:
\(\left\{{}\begin{matrix}x+1=1\\xy-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\-1=3\end{matrix}\right.\Leftrightarrow loại\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x+1=3\\xy-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x+1=-1\\xy-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x+1=-3\\xy-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-\dfrac{1}{2}\end{matrix}\right.\left(loại\right)\)
Vậy: \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;1\right)\right\}\)
c) Ta có: \(\left(x+y\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vây: (x,y)=(-1;1)
d) Ta có: \(\left|x+y\right|\cdot\left(x-y\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+y\right|=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy: (x,y)=(0;0)
a) \(\dfrac{x}{-6}=\dfrac{-15}{45}\)
\(\dfrac{-x}{6}=\dfrac{-15}{45}\)
\(\dfrac{x}{6}=\dfrac{15}{45}\)
\(x=\dfrac{\left(15\cdot6\right)}{45}\)
\(x=2\)
b) \(\dfrac{x}{5}=\dfrac{16}{25}\)
\(x=\dfrac{\left(16\cdot5\right)}{25}\)
\(x=\dfrac{80}{25}\)
\(x=\dfrac{16}{5}\)
c) \(\dfrac{5}{x-3}=\dfrac{20}{-12}\)
\(x-3=\dfrac{\left(5\cdot-12\right)}{20}\)
\(x-3=-3\)
\(x=\left(-3\right)+3\)
\(x=0\)
d) \(\dfrac{2}{5}\cdot x=\dfrac{6}{35}\)
\(x=\dfrac{6}{35}\div\dfrac{2}{5}\)
\(x=\dfrac{3}{7}\)
a)
(x+1)(y-2) = 3
=> x+1 và y-2 là các ước của 3
Ư(3) = {1; -1; 3; -3}
Lập bảng giá trị:
x+1 | 1 | 3 | -1 | -3 |
y-2 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 5 | 3 | -1 | 1 |
Vậy các cặp (x,y) cần tìm là:
(0; 5); (2; 3); (-2; -1); (-4; 1).
a, \(xy\) = \(x\) - y
\(xy\) + y = \(x\)
y.(\(x\) + 1) = \(x\)
y = \(\dfrac{x}{x+1}\) (đk \(x\) ≠ -1)
y nguyên ⇔ \(x\) ⋮ \(x\) + 1
⇒ \(x\) + 1 - 1 ⋮ \(x\) + 1
1 ⋮ \(x\) + 1
\(x\) + 1 \(\in\) Ư(1) = {-1; 1}
lập bảng ta có:
\(x+1\) | -1 | 1 |
\(x\) | -2 | 0 |
y = \(\dfrac{x}{x+1}\) | 2 | 0 |
(\(x\);y) | (-2;2) | (0;0) |
Theo bảng trên ta có các cặp \(x\); y nguyên thỏa mãn đề bài là:
(\(x\); y) = (-2; 2); (0; 0)
a: \(\Leftrightarrow\left(x+3;y-2\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;9\right);\left(4;3\right);\left(-4;-5\right);\left(-10;1\right)\right\}\)
b: (x+1)(xy+2)=5
=>\(\left(x+1;xy+2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,xy\right)\in\left\{\left(0;3\right);\left(4;-1\right);\left(-2;-7\right);\left(-6;-3\right)\right\}\)
mà x,y là số nguyên
nên (x,y)=\(\varnothing\)
a) \(xy+x+y=2\)
\(xy+x+y+1=2+1\)
\(\left(xy+x\right)+\left(y+1\right)=3\)
\(x\left(y+1\right)+\left(y+1\right)=3\)
\(\left(y+1\right)\left(x+1\right)=3\)
\(\Rightarrow\left\{{}\begin{matrix}x+1\in\left\{-3;-1;1;3\right\}\\y+1\in\left\{-1;-3;3;1\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-4;-2;0;2\right\}\\y\in\left\{-2;-4;2;0\right\}\end{matrix}\right.\)
Vậy ta tìm được các cặp giá trị \(\left(x;y\right)\) thỏa mãn yêu cầu:
\(\left(-4;-2\right);\left(-2;-4\right);\left(0;2\right);\left(2;0\right)\)
b) \(\left(x+1\right).y+2=-5\)
\(\left(x+1\right).y=-5-2\)
\(\left(x+1\right).y=-7\)
\(\Rightarrow\left\{{}\begin{matrix}x+1\in\left\{-7;-1;1;7\right\}\\y\in\left\{1;7;-7;-1\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-8;-2;0;6\right\}\\y\in\left\{1;7;-7;-1\right\}\end{matrix}\right.\)
Mà \(x< y\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-8;-2\right\}\\y\in\left\{1;7\right\}\end{matrix}\right.\)
Vậy ta tìm được các cặp giá trị \(\left(x;y\right)\) thỏa mãn yêu cầu:
\(\left(-8;1\right);\left(-2;7\right)\)
giúp mình với, mình đang vội!