Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có:
xy2 + 2xy -243y +x = 0
x( y2 + 2y + 1) -243y = 0
x(y+1)2 = 243y
x = 243y(y+1)2
Vì x thuộc Z nên 243y(y+1)2 thuộc Z, mà Ư CLN(y,y+1) = 1 243 chia hết (y+1)2
(y+1)2 thuộc {9; 81}
y+1 thuộc {3; -3; 9; -9}
y thuộc {2; -4; 8; -10}
x thuộc {54; -108; 24; -30}
Vậy (x; y) = (54; 2) (24; 8) (-108;-4) (-30;-10)
Ta có:
\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)
\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)
\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)
Ta viết phương trình về dạng: \(2x^2-\left(2y-1\right)x+\left(2y^2+y-10\right)=0\)
Coi đây là phương trình bậc 2 theo ẩn x thì \(\Delta_x=\left(2y-1\right)^2-8\left(2y^2+y-10\right)=-12y^2-12y+81\)
Điều kiện để phương trình có nghiệm là \(\Delta_x\ge0\)hay \(-12y^2-12y+81\ge0\)\(\Leftrightarrow\frac{-1-2\sqrt{7}}{2}\le y\le\frac{-1+2\sqrt{7}}{2}\)mà y nguyên nên \(-3\le y\le2\)
Lập bảng:
\(y\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) |
\(x\) | \(-1\) | \(\varnothing\) | \(-3\) | \(2\) | \(\varnothing\) | \(0\) |
Vậy phương trình có 4 cặp nghiệm nguyên \(\left(x,y\right)=\left\{\left(2,0\right);\left(0,2\right);\left(-1,-3\right);\left(-3;-1\right)\right\}\)
Cách khác: Ta có \(x^2y+2xy+y=32x\)
\(\Leftrightarrow y\left(x+1\right)^2=32x\).
Từ đó \(32x⋮\left(x+1\right)^2\).
Mà \(\left(x,\left(x+1\right)^2\right)=1\) nên \(32⋮\left(x+1\right)^2\Leftrightarrow\left(x+1\right)^2\in\left\{1;4;16\right\}\).
+) Với \(\left(x+1\right)^2=1\Rightarrow x=0\) (loại)
+) Với \(\left(x+1\right)^2=4\Rightarrow x=1;y=8\)
+) Với \(\left(x+1\right)^2=16\Rightarrow x=3;y=6\).
Vậy...
\(\Leftrightarrow y\left(x^2+2x+1\right)-32x-32=-32\)
\(\Leftrightarrow y\left(x+1\right)^2-32\left(x+1\right)=-32\)
\(\Leftrightarrow\left(x+1\right)\left(xy+y-32\right)=-32\)
Do \(x+1\ge2\) nên chỉ có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}x+1=2\\xy+y-32=-16\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+1=4\\xy+y-32=-8\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}x+1=8\\xy+y-32=-4\end{matrix}\right.\)
TH4: \(\left\{{}\begin{matrix}x+1=16\\xy+y-32=-2\end{matrix}\right.\)
TH5: \(\left\{{}\begin{matrix}x+1=32\\xy+y-32=-1\end{matrix}\right.\)
Bạn tự giải
\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)
\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)
\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)
Mà x nguyên dương \(\Rightarrow2x-1>0\)
\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\)
\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(2x^2+2y^2-2xy+y-x-10=0\)
\(\Leftrightarrow2x^2-x\left(2y+1\right)+2y^2+y-10=0\)
Coi pt trên là pt bậc 2 ẩn x
\(\Delta_x=\left(2y+1\right)^2-8\left(2y^2+y-10\right)\)
\(=4y^2+4y+1-16y^2-8y+80\)
\(=-12y^2-4y+81\)
Để pt có nghiệm nguyên thì \(\hept{\begin{cases}\Delta_x\ge0\\\Delta_x=k^2\left(k\inℕ^∗\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-12y^2-4y+81\ge0\\-12y^2-4y+81=k^2\end{cases}}\)
Giải nốt đi , đến đây dễ r