K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

\(\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}\)

Cộng theo vế của (1); (2) và (3) ta có:

\(\left(x+y+z\right)^2=9\)

\(\Rightarrow x+y+z=\pm9\)

Xét \(x+y+z=9\)

\(\Rightarrow\begin{cases}x\cdot9=-5\\y\cdot9=9\\z\cdot9=5\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{5}{9}\\y=1\\z=\frac{5}{9}\end{cases}\)

Xét \(x+y+z=-9\)

\(\Rightarrow\begin{cases}x\cdot\left(-9\right)=\left(-5\right)\\y\cdot\left(-9\right)=9\\z\cdot\left(-9\right)=5\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{5}{9}\\y=-1\\z=-\frac{5}{9}\end{cases}\)

16 tháng 7 2017

Vì x ( x + y + z ) = - 5

y ( x + y + z ) = 9

z ( x + y + z ) = 5

=> Ta có:

x ( x + y + z ) + y ( x + y + z ) + z ( x + y + z ) = -5 + 9 + 5

=>( x + y + z) (x + y + z) = (-5+5) + 9

=> (x + y + z)2 = 9

=>\(\) \(\left[{}\begin{matrix}x+y+z=3\\x+y+z=-3\end{matrix}\right.\)

Xét TH 1: x + y + z = 3

Thay x + y + z = 3 vào x ( x + y + z ) = - 5 ; y ( x + y + z ) = 9 , z ( x + y + z ) = 5 ta được:

\(=>\left\{{}\begin{matrix}x.3=-5\\y.3=9\\z.3=5\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)

Xét TH 2; x + y + z = -3

Thay x +y + z = -3 vào x ( x + y + z ) = - 5 ; y ( x + y + z ) = 9 , z ( x + y + z ) = 5 ta được:

\(=>\left\{{}\begin{matrix}x.-3=-5\\y.-3=9\\z.-3=5\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-3\\z=\dfrac{-5}{3}\end{matrix}\right.\)

Vậy.......