Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)
\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)
\(VP=\left(y^2+3y+1\right)^2-1\)
\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))
pt đã cho trở thành:
\(x^2=t^2-1\)
\(\Leftrightarrow t^2-x^2=1\)
\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)
Ta xét các TH:
\(t-x\) | 1 | -1 |
\(t+x\) | 1 | -1 |
\(t\) | 1 | -1 |
\(x\) | 0 |
0 |
Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)
Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).
Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)
1/ Ta chứng minh với \(x>6\)thì \(10.2^x>13x^2\) cái này dùng quy nạp chứng minh được:
Từ đây ta xét với \(x>6\)thì
\(\Rightarrow\hept{\begin{cases}10.2^6-13x^2>0\\10-3x< 0\end{cases}}\)
\(\Rightarrow\)Phương trình vô nghiệm.
Giờ chỉ cần kiểm tra \(x=1;2;3;4;5;6\) xem cái nào thỏa mãn nữa là xong.
2/ \(3^x+1=\left(y+1\right)^2\)
\(\Leftrightarrow3^x=y\left(y+2\right)\)
Với \(y=1\)
\(\Rightarrow x=1\)
Với \(y>1\)
Với \(y⋮3\)\(\Rightarrow y+2⋮̸3\)
Với \(y+2⋮3\)\(\Rightarrow y⋮̸3\)
Vậy \(x=1,y=1\)
\(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
\(\Leftrightarrow y\left[2y^2+\left(x^2-3x\right)y+3x^2+x\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\2y^2+\left(x^2-3x\right)y+3x^2+x=0\end{cases}}\)
Với \(y=0\)thì x nguyên tùy ý.
Với \(2y^2+\left(x^2-3x\right)y+3x^2+x=0\)
Ta có: \(\Delta=\left(x^2-3x\right)^2-4.2.\left(3x^2+x\right)=\left(x-8\right)x\left(x+1\right)^2\)
Với \(x=-1\) thì \(\Rightarrow y=-1\)
Với \(x\ne-1\) để y nguyên thì \(\Delta\) phải là số chính phương hay
\(\left(x-8\right)x=k^2\)
\(\Leftrightarrow\left(x^2-8x+16\right)-k^2=16\)
\(\Leftrightarrow\left(x-4+k\right)\left(x-4-k\right)=16\)
Tới đây thì đơn giản rồi b làm tiếp nhé.
Câu hỏi của Lan Anh Nguyễn - Toán lớp 9 - Học toán với OnlineMath
thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...