K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 12 2020

\(C=\dfrac{\left(x^2+3x\right)\left(x^2+2\right)-2}{x^2+2}=x^2+3x-\dfrac{2}{x^2+2}\)

\(C\in Z\Leftrightarrow2⋮\left(x^2+2\right)\)

\(\Leftrightarrow x^2+2=2\Rightarrow x=0\)

20 tháng 12 2020

ĐKXĐ: \(x\ne1\)

Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)

\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)

\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)

\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)

\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)

Để B nguyên thì \(3⋮\left(x-1\right)^2\)

\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)

mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ

nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)

\(\Leftrightarrow x-1\in\left\{1;9\right\}\)

hay \(x\in\left\{2;10\right\}\) (nhận)

Vậy: \(x\in\left\{2;10\right\}\)

18 tháng 11 2017

MK ko biế đúng ko nữa , sai thì ý kiến

a)

Tìm số nguyên của x để mỗi phân thức sau có giá trị là số nguyên,(x^4 - 2x^3 - 3x^2 + 8x - 1) / (x^2 - 2x +1),(x^4 + 3x^3 +2x^2 + 6x -2) / (x^2 + 2),Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

b)

Tìm số nguyên của x để mỗi phân thức sau có giá trị là số nguyên,(x^4 - 2x^3 - 3x^2 + 8x - 1) / (x^2 - 2x +1),(x^4 + 3x^3 +2x^2 + 6x -2) / (x^2 + 2),Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Chúc các bn hok tốt

Tham khảo nhé

a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b) Ta có: \(\dfrac{4x-4}{2x^2-2}\)

\(=\dfrac{4\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{2}{x+1}\)

Để phân thức có giá trị bằng -2 thì \(\dfrac{2}{x+1}=-2\)

\(\Leftrightarrow x+1=-1\)

hay x=-2(thỏa ĐK)

4 tháng 12 2018

Nguyên Dương Hay Nguyên Âm

4 tháng 12 2018

\(A=\frac{\left(x^4+4x^2+4\right)+\left(3x^3+6x\right)-\left(2x^2+4\right)-2}{x^2+2}\)

\(A=\frac{\left(x^2+2\right)^2+3x\left(x^2+2\right)-2\left(x^2+2\right)-2}{x^2+2}\)

\(A=\frac{\left(x^2+2\right)\left(x^2+3x\right)}{x^2+2}-\frac{2}{x^2+2}=x^2+3x-\frac{2}{x^2+2}\)

Để A là số nguyên, mà x là số nguyên nên \(x^2+3x\)nguyên, do đó \(\frac{2}{x^2+2}\inℤ\)

Do \(x^2+2\ge2\) nên \(x^2+2=2\Leftrightarrow x=0\)

18 tháng 2 2021

phân thức được xác định ⇔ x2 - 1 ≠ 0 ⇔ x ≠ \(\left\{-1;1\right\}\)

\(\dfrac{3x+3}{x^2-1}=-2\) 

=> 3x + 3 = -2x2 + 2

=> 2x2 + 3x + 1 = 0

=> (2x+1)(x+1) = 0

=> x = -1/2 (thỏa mãn) hoặc x = -1 (loại)

Vậy, để phân thức có giá trị bằng  –2 thì x = -1/2.

 

 

 

18 tháng 2 2021

\(\dfrac{3x+3}{x^2-1}\)=\(\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)  (x khác -1 và x khác 1)

\(\dfrac{3}{x-1}\)

=> Phân thức ban đầu có giá trị nguyên ⇔ 3 chia hết cho x-1

=> x-1 ∈\(\left\{-3;-1;1;3\right\}\)

=> x ∈\(\left\{-2;0;2;4\right\}\)

Vậy, để phân thức có giá trị là số nguyên.thì x ∈\(\left\{-2;0;2;4\right\}\).