Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
a) Phân thức xác định \(\Leftrightarrow x^2-1\ne0\Leftrightarrow\left(x-1\right)\left(x+1\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}}\)
Ta có :
\(A=\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{3}{x-1}\)
Để A có giá trị bằng -2 thì \(\frac{3}{x-1}=-2\)
\(\Leftrightarrow3=-2x+2\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
b) Để A là số nguyên thì :
\(3⋮x-1\)
\(\Rightarrow x-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow x\in\left\{2;4;0;-2\right\}\)( thỏa mãn ĐKXĐ )
Vậy...........
\(a,ĐKXĐ:x\ne\pm1\)
Ta có : \(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{3}{x-1}\)
\(\Rightarrow\frac{3x+3}{x^2-1}=-2\Leftrightarrow\frac{3}{x-1}=-2\)
\(\Leftrightarrow-2\left(x-1\right)=3\)
\(\Leftrightarrow-2x+2=3\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
\(b,\) Để phân thức \(\frac{3x+3}{x^2-1}\) có giá trị nguyên thì \(\frac{3}{x-1}\) có giá trị nguyên
\(\Rightarrow3⋮x-1\)
\(\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{0;2;-2;4\right\}\)
Vậy \(x=-2;0;2;4\)
bài1 A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)
b) thế \(x=-\frac{1}{2}\)vào biểu thức A
\(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)
c) A=\(-\frac{1}{3x}< 0\)
VÌ (-1) <0 nên 3x>0
x >0
Đặt phân thức đã cho là A
\(ĐKXĐ:x^2-x\ne0\)\(\Leftrightarrow x\left(x-1\right)\ne0\)\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
a) \(A=\frac{2x-2}{x^2-x}=\frac{2\left(x-1\right)}{x\left(x-1\right)}=\frac{2}{x}\)
Với \(x=3\)( thoả mãn ĐKXĐ ) \(\Rightarrow A=\frac{2}{3}\)
Với \(x=0\)( không khoả mãn ĐKXĐ ) \(\Rightarrow\)Không tìm được giá trị của A
b) \(A=2\)\(\Leftrightarrow\frac{2}{x}=2\)\(\Leftrightarrow x=1\)( không thoả mãn ĐKXĐ )
Vậy không tìm được giá trị của x để \(A=2\)
c) A có giá trị nguyên \(\Leftrightarrow\frac{2}{x}\inℤ\)\(\Leftrightarrow2⋮x\)\(\Leftrightarrow x\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
So sánh với ĐKXĐ \(\Rightarrow x=1\)không thoả mãn
Vậy A nguyên \(\Leftrightarrow x\in\left\{-2;-1;2\right\}\)
ĐKXĐ:
----------->x khác 0
---------->(x-1) khác 0 ----------> x khác 1
VẠY ĐKXĐ LÀ X khác 0 và 1.
Bạn tự rút gọn nha
a, 2x-2\ x^2-x= 2\x
Thay x=3 vào biểu thức có:
-----> = 2\3
Vậy nếu thay x=3 vào biểu thức thì = 2\3
thay x=0 vào biểu thức có
------> = 0 vì 2\0=0
VẬY nếu thay x=0 thì biểu thức thì =0
b,
theo đề bài ta có
2\x=2
-----> 2:x=2
Vậy x=1
Câu c mik ko chắc nên bn tự làm nha
mik rất sorry:(((((((
\(a,\)\(đkxđ\Leftrightarrow\)\(\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}}\)\(\Rightarrow x\ne\pm3\)
\(b,\)\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)
\(=\frac{5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{5x-15+3x+9-5x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)
\(c,\)Tại x = 6, ta có :
\(B=\frac{3}{x+3}=\frac{3}{6+3}=\frac{3}{9}=\frac{1}{3}\)
Vậy tại x = 6 thì B = 3
\(d,\)Để \(B\in Z\Rightarrow\frac{3}{x+3}\in Z\Rightarrow x+3\inƯ_3\)
Mà \(Ư_3=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\)TH1 : \(x+3=1\Rightarrow x=-2\)
Th2: \(x+3=-1\Rightarrow x=-4\)
Th3 : \(x+3=3\Rightarrow x=0\)
TH4 \(x+3=-3\Rightarrow x=-6\)
Vậy để \(B\in Z\)thì \(x\in\left\{-6;-4;-2;0\right\}\)
a)Để B đc xác định thì :x+3 khác 0
x-3 khác 0
x^2-9 khác 0
=>x khác -3
x khác 3
b) Kết Qủa BT B là:3/x+3
Bài 1:
a) x≠2x≠2
Bài 2:
a) x≠0;x≠5x≠0;x≠5
b) x2−10x+25x2−5x=(x−5)2x(x−5)=x−5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x
c) Để phân thức có giá trị nguyên thì x−5xx−5x phải có giá trị nguyên.
=> x=−5x=−5
Bài 3:
a) (x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)
=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5
=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5
=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5
=[(x+1)2+6−(x2+2x−3)]⋅25=[(x+1)2+6−(x2+2x−3)]⋅25
=[(x+1)2+6−x2−2x+3]⋅25=[(x+1)2+6−x2−2x+3]⋅25
=[(x+1)2+9−x2−2x]⋅25=[(x+1)2+9−x2−2x]⋅25
=2(x+1)25+185−25x2−45x=2(x+1)25+185−25x2−45x
=2(x2+2x+1)5+185−25x2−45x=2(x2+2x+1)5+185−25x2−45x
=2x2+4x+25+185−25x2−45x=2x2+4x+25+185−25x2−45x
=2x2+4x+2+185−25x2−45x=2x2+4x+2+185−25x2−45x
=2x2+4x+205−25x2−45x=2x2+4x+205−25x2−45x
c) tự làm, đkxđ: x≠1;x≠−1
a
\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)
b
\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)
c
Với \(x=4\Rightarrow A=-3\)
d
Để A nguyên thì \(\frac{3}{x-3}\) nguyên
\(\Rightarrow3⋮x-3\)
Làm nốt.
a) ĐKXĐ: \(^{x^3+2x^2+x+2}\)khác 0
=> x^2(x+2)+(x+2) Khác 0
=> (x^2+1)(x+2) khác 0
=> x^2 khác -1(vô lý) và x khác -2
Vậy x khác -2 thì biểu thức A được xác định
b)\(A=\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{x^2\left(x+2\right)+\left(x+2\right)}\)
\(=\frac{3x^2\left(x+2\right)}{\left(x^2+1\right)\left(x+2\right)}=\frac{3x^2}{x^2+1}\)
Để A=2 thì \(\frac{3x^2}{x+2}=2\)=>\(3x^2=2\left(x^2+1\right)=>3x^2=2x^2+2\)
\(=>x^2=2=>x=\sqrt{2}\)(Thỏa mãn điều kiện xác định)
a)Đk: x khac -7
b) A=\(\frac{4x^2+25x-16}{x+7}\)= \(\frac{\left(4x-3\right)\left(x+7\right)+5}{x+7}\)= \(4x-3+\frac{5}{x+7}\)
c)đê A nguyen thi 5 chia het cho x+7 => x + 7 thuoc uoc chung cua 5 la 5;-5;1;-1
vay x+7=5 => x=-2
x+7=-5 => x=-12
x+7=1 =>x=-6
x+7=-1 =>x=-8
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(\dfrac{4x-4}{2x^2-2}\)
\(=\dfrac{4\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2}{x+1}\)
Để phân thức có giá trị bằng -2 thì \(\dfrac{2}{x+1}=-2\)
\(\Leftrightarrow x+1=-1\)
hay x=-2(thỏa ĐK)