K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
13 tháng 7 2021

Ta có: \(1\div\left(a+b+c\right)=\overline{0,abc}=\frac{\overline{abc}}{1000}\)

\(\Leftrightarrow\overline{abc}\times\left(a+b+c\right)=1000\)

Vì \(\overline{abc}\)là số có ba chữ số nên ta có các cách phân tích sau: 

 \(1000=500\times2=250\times4=200\times5=125\times8=100\times10\)

Thử từng trường hợp trong các trường hợp trên, chỉ có \(\overline{abc}=125\)là thỏa mãn. 

19 tháng 12 2023

\(\Rightarrow\dfrac{100xa+10xb+c}{1000}=\dfrac{1}{a+b+c}\)

\(\Rightarrow\dfrac{\overline{abc}}{1000}=\dfrac{1}{a+b+c}\Rightarrow\overline{abc}=\dfrac{1000}{a+b+c}\)

Do \(\overline{abc}\) là số có 3 chữ số \(\Rightarrow\overline{abc}>100\)

\(\Rightarrow\dfrac{1000}{a+b+c}>100\Rightarrow a+b+c< 1000:100=10\)

Do \(\overline{abc}\) là số nguyên \(\Rightarrow1000⋮a+b+c\)

=> a+b+c=2 hoặc a+b+c=4 hoặc a+b+c=5 hoặc a+b+c=8

Thử với từng trường hợp ta có a+b+c=8 => \(\overline{abc}=125\) thỏa mãn yêu cầu của đề bài