Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy : VT >= 0
Dấu "=" xảy ra <=> x-\(\sqrt{2}\)= 0 ; y+\(\sqrt{2}\)= 0 ; x+y+z = 0
<=> x=\(\sqrt{2}\); y=\(-\sqrt{2}\); z = 0
Vậy ...........
Tk mk nha
Vì \(\hept{\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\forall x\\\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\forall y\\\left|x+y+z\right|\ge0\forall x;y;z\end{cases}}\)
Do đó : \(\hept{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{cases}}\)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\)
Ta thấy: \(\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\\\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\)
\(\Rightarrow\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x-\sqrt{2}\right|=0\\\left|y+\sqrt{2}\right|=0\\\left|x+y+z\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}+\left(-\sqrt{2}\right)+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{cases}\)
Ta có : \(9^{x-1}=\frac{1}{9}\)
=> \(9^{x-1}=9^{-1}\)
=> x - 1 = -1
=> x = 0
ko biết bạn học mũ âm chưa nêu chưa thì mk xin lỗi
=>