Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có:
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{57}{7}\)
+) \(\frac{x}{6}=\frac{57}{7}\Rightarrow x=\frac{342}{7}\)
+) \(\frac{y}{4}=\frac{57}{7}\Rightarrow y=\frac{228}{7}\)
+) \(\frac{z}{3}=\frac{57}{7}\Rightarrow z=\frac{171}{7}\)
Vậy \(x=\frac{342}{7},y=\frac{228}{7},z=\frac{171}{7}\)
\(A=\frac{5}{x-1}\) . Điều kiện x khác 1
Để A nhận giá trị nguyên thì x-1 là ước của 5
Suy ra \(\left(x-1\right)\in\left\{\pm5;\pm1\right\}\)
\(\Rightarrow x\in\left\{-4;6;2;0\right\}\)
\(\frac{6}{7}-\left(x-\frac{1}{2}\right)=\frac{5}{6}\)
\(\frac{6}{7}-x+\frac{1}{2}=\frac{5}{6}\)
\(-x=\frac{5}{6}-\frac{6}{7}-\frac{1}{2}\)
\(-x=\frac{35}{42}-\frac{36}{42}-\frac{21}{42}\)
\(-x=-\frac{22}{42}\)
\(x=\frac{11}{21}\)
\(\Rightarrow21\times x=21\times\frac{11}{21}=11\)
\(\frac{6}{7}-\left(x-\frac{1}{2}\right)=\frac{5}{6}\)
\(x-\frac{1}{2}=\frac{6}{7}-\frac{5}{6}\)
\(x-\frac{1}{2}=\frac{1}{42}\)
\(x=\frac{1}{42}+\frac{1}{2}=\frac{11}{21}\)
Vậy \(21x=21\times\frac{11}{21}=11\)
Vì A là giao điểm của hai tọa độ nên:
-3.x+1=-4.x
-3x+1=-4x
1=-4x-(-3x)
1=-4x+3x
1=-x
x=-1
Khi x=-1=>y=4
Vậy A có tọa độ là (-1;4)
a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)\(\Leftrightarrow\frac{bk-b}{b}=\frac{dk-d}{d}\)
Xét VT \(\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\left(1\right)\)
Xét VP \(\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\left(2\right)\)
Từ (1) và (2) =>Đpcm
b)Đặt tương tự ta xét VT:
\(\frac{11bk+3b}{11dk+3d}=\frac{b\left(11k+3\right)}{d\left(11k+3\right)}=\frac{b}{d}\left(1\right)\)
Xét VP \(\frac{3bk-11b}{3dk-11d}=\frac{b\left(3k-11\right)}{d\left(3k-11\right)}=\frac{b}{d}\left(2\right)\)
Từ (1) và (2) =>Đpcm
c)Cũng đặt tương tự
Xét VT \(\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
Xét VP \(\frac{bk\cdot dk}{b\cdot d}=\frac{b\cdot d\cdot k^2}{b\cdot d}=k^2\left(2\right)\)
Từ (1) và (2) =>Đpcm
d)Đặt cũng như vậy
Xét VT \(\frac{4\left(bk\right)^4+5b^4}{4\left(dk\right)^4+5d^4}=\frac{4b^4k^4+5b^4}{4d^4k^4+5d^4}=\frac{b^4\left(4k^4+5\right)}{d^4\left(4k+5\right)}=\frac{b^4}{d^4}\left(1\right)\)
Xét VP \(\frac{\left(bk\right)^2b^2}{\left(dk\right)^2d^2}=\frac{b^2k^2b^2}{d^2k^2d^2}=\frac{k^2b^4}{k^2d^4}=\frac{b^4}{d^4}\left(2\right)\)
Từ (1) và (2) =>Đpcm
a) \(\frac{a-b}{b}=\frac{c-d}{d}\)
Xét d. ( a - b ) = a . d - b . d
b. ( c - d ) = b . c - b . d
Vì \(\frac{a}{b}=\frac{c}{d}\) => a . d = b . c
hay d. ( a - b ) = b. ( c - d )
=> \(\frac{a-b}{b}=\frac{c-d}{d}\)
Vậy \(\frac{a-b}{b}=\frac{c-d}{d}\)
6-/2-x/=4
\(\Rightarrow\)/2-x/=6-4
\(\Rightarrow\)/2-x/=2
\(\Rightarrow\left\{\begin{matrix}2-x=2\\2-x=-2\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x=2-2\\x=2-\left(-2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(\Rightarrow x=\left\{0;4\right\}\)
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\)
=> x=2.5=10
y=2.2=4
z=2.3=6
Theo đề bài, ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}\) và 2x-3y+5z=38
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+5z}{2.5-3.2+5.3}=\frac{38}{19}=2\)
- \(\frac{x}{5}=2.5=10\)
- \(\frac{y}{2}=2.2=4\)
- \(\frac{z}{3}=2.3=6\)
Vậy x=10,y=4,z=6
^...^ ^_^
2