Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{abc}{1000}=\frac{1}{a+b+c}\)
\(\frac{abc}{1000}=\frac{abc}{\left(a+b+c\right)abc}\)
-->(a+b+c)abc=1000
Ta có:
1000=10.100=100.10(loại vì a khác b khác c khác 0)
1000=5.200=200.5(loại vì a khác b khác c khác 0)
1000=2.500=500.2(loại vì a khác b khác c khác 0)
1000=4.250(loại vì a khác b khác c khác 0)
1000=8.125(chọn)
-->(a+b+c)abc=1000
-->a=1,b=2,c=5
a+b+c=8 (chọn)
Thử lại:
0,125=\(\frac{1}{1+2+5}\)
Vậy abc=125
Mình giải không hay lắm nhỉ,nhưng cứ cho ****!
tìm các chữ số a, b ,c trong số thập phân 0. abc( a b c khác nhau và khác 0)
Biết 0. abc= 1: ( a+b+c)
Ta có: \(1\div\left(a+b+c\right)=\overline{0,abc}=\frac{\overline{abc}}{1000}\)
\(\Leftrightarrow\overline{abc}\times\left(a+b+c\right)=1000\)
Vì \(\overline{abc}\)là số có ba chữ số nên ta có các cách phân tích sau:
\(1000=500\times2=250\times4=200\times5=125\times8=100\times10\)
Thử từng trường hợp trong các trường hợp trên, chỉ có \(\overline{abc}=125\)là thỏa mãn.
\(\Rightarrow\dfrac{100xa+10xb+c}{1000}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\dfrac{\overline{abc}}{1000}=\dfrac{1}{a+b+c}\Rightarrow\overline{abc}=\dfrac{1000}{a+b+c}\)
Do \(\overline{abc}\) là số có 3 chữ số \(\Rightarrow\overline{abc}>100\)
\(\Rightarrow\dfrac{1000}{a+b+c}>100\Rightarrow a+b+c< 1000:100=10\)
Do \(\overline{abc}\) là số nguyên \(\Rightarrow1000⋮a+b+c\)
=> a+b+c=2 hoặc a+b+c=4 hoặc a+b+c=5 hoặc a+b+c=8
Thử với từng trường hợp ta có a+b+c=8 => \(\overline{abc}=125\) thỏa mãn yêu cầu của đề bài
các số viết được là \(\overline{abc},\overline{acb},\overline{bac},\overline{bca},\overline{cab},\overline{cba}\)
Tổng các số là
\(\overline{abc}+\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}\)
\(=a\times100+b\times10+c+a\times100+c\times10+b+b\times100+a\times10+c\)
\(+b\times100+c\times10+a+c\times100+a\times10+b+c\times100+b\times10+a\)
\(=\left(100a+100a+10a+a+10a+a\right)+\left(100b+100b+10b+10b+b+b\right)\)
\(+\left(100c+100c+10c+10c+c+c\right)\)
\(=222a+222b+222c\)
\(=222\left(a+b+c\right)\)
\(=222\times18=3996\)
0,abc = 1 : (a + b + c)
=> abc/1000 = 1/a + b + c => abc . (a + b + c) = 1000
Viết:
1000 = 500 . 2
= 250 . 4
= 125 . 8
= 200 . 5
= 100 . 10
Đáp ứng các cặp số:
abc = 125 (thỏa mãn)
Vậy: a = 1; b = 2; c = 5
\(\overline{0,abc}=\frac{1}{a+b+c}\)( a , b , c \(\ne\)0 )
Theo đề bài :
\(\overline{0,abc}=\frac{1}{a+b+c}\)
\(\overline{0,a}+\overline{0,0b}+\overline{0,00c}=\frac{1}{a+b+c}\)
Hay : \(\left(\overline{0,a}+\overline{0,0b}+\overline{0,00b}\right)\times\left(a+b+c\right)=1\)
Nhân cả hai vế với 1000 , ta được :
\(\left(\overline{a00}+\overline{b0}+c\right)\times\left(a+b+c\right)=1000\)
\(\overline{abc}\times\left(a+b+c\right)=1000\)
Ta có : \(1000=500\times2\)
\(=250\times4\)
\(=125\times8\)
Thử chọn ta được : \(\overline{abc}=125\)