Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai kết bạn vs mình ko mình hết lượt rồi tk cho mình nhé
2b chia hết cho 2
=>Để a+2b chia hết cho 2 thì a chia hết cho 2
* 114 chia hết cho 3
3 BCNN(a,b) chia hết cho 3
=> để ƯCLN(a,b) + 3 BCNN(a,b) thì ƯCLN(a,b) chia hết cho 3
=> a chia hết cho 3 ( vì (2,3) = 1 => a chia hết cho 6
Vì a+2b = 48 => a<48
=> a = {6;12;18;24;30;36;42}
Rồi bạn lập 1 cái bảng để tìm ra số b và CM ƯCLN(a,b)+3. BCNN (a,b)=114 và kết quả là 2 cặp (12;18) , (36;6)
P/S : bạn có sai đề một tí vì ƯCLN(a,b)+3. BCNN (a,b) phải =114
Em tham khảo tại link dưới đây nhé.
Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath
Giả sử d = (a;b). Khi đó ta có:
\(\hept{\begin{cases}a=md\\b=nd\end{cases}};\left(m;n\right)=1\Rightarrow\left[a;b\right]=mnd\)
Ta có: md+2nd=48 và 3mnd+d=114
md+2nd=48⇒d(m+2n)=48
3mnd+d=114⇒d(3mn+1)=114
Suy ra d∈ƯC(48,114)=(6;3;2;1)
Nếu d = 1, ta có: 3mn+1=114⇒3mn=113
Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 2 ta có: 3mn+1=57⇒3mn=56
Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 3 ta có: 3mn+1=38⇒3mn=37
Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6
Và m+2n=8
Suy ra m = 2, n = 3 hoặc m = 6, n = 1
Vậy a = 12, b = 36 hoặc a = 36, b = 6.
hok tốt
Lời giải:
Ta có:
$14=ƯCLN(a,b)+3BCNN(a,b)\Rightarrow 3BCNN(a,b)< 14$
$\Rightarrow BCNN(a,b)< \frac{14}{3}$
$\Rightarrow a< \frac{14}{3}; b< \frac{14}{3}$
$\Rightarrow a+2b< \frac{14}{3}+2.\frac{14}{3}=14$
Mà $a+2b=48$ nên vô lý
Vậy không tồn tại $a,b$ thỏa mãn đề.
này
bài làm:tao không bt kkkkkkkkk
Với \(a,b\inℕ\), \(ƯCLN\left(a,b\right)+3\cdot BCNN\left(a,b\right)=14\)
\(a+2b=48\) (2), từ đó, ta có: \(0\le a\le48,\text{ }0\le b\le24,\text{ }ƯCLN\left(a,b\right)\le14,\text{ }BCNN\left(a,b\right)\le4\)
Vì 2b là số chẵn, 48 là số chẵn nên a cũng phải là số chẵn, nên \(BCNN\left(a,b\right)\) cũng là số chẵn.
Với \(a=0,\text{ }b\ne0\), ta có: \(b=24\), \(ƯCLN\left(a,b\right)=24\) (không tmđk), \(BCNN\left(a,b\right)=0\)
Với \(a\ne0,\text{ }b=0\), ta có: \(a=48\), \(ƯCLN\left(a,b\right)=48\) (không tmđk), \(BCNN\left(a,b\right)=0\)
Với \(a,b\ne0\), ta có: \(2\le a\le46,\text{ }1\le b\le23\)
\(1\leƯCLN\left(a,b\right)\le14,\text{ }2,\text{ }BCNN\left(a,b\right)\in\left\{2;4\right\}\)
TH1: Nếu \(BCNN\left(a,b\right)=2\) thì \(ƯCLN\left(a,b\right)=14-2\cdot3=8\)
\(BCNN\left(a,b\right)=2\) phải có ít nhất 1 số bằng 2, và số còn lại phải bằng \(Ư\left(2\right)=\left\{1;2\right\}\)
Mà \(ƯCLN\left(a,b\right)=8\) thì số 2 không chia hết cho 8
Nên trường hợp này \(a,b\in\varnothing\)
TH2: Nếu \(BCNN\left(a,b\right)=4\) thì \(ƯCLN\left(a,b\right)=14-4\cdot3=2\)
\(\Rightarrow a,b⋮2\)
\(BCNN\left(a,b\right)=4\) phải có ít nhất 1 số bằng 4, và số còn lại phải bằng \(Ư\left(4\right)=\left\{1;2;4\right\}\)
* Với \(a=4\), ta có: \(2b=44\Leftrightarrow b=22\) (không tmđk)
* Với \(b=4\), ta có: \(a=40\Leftrightarrow a=20\) (không tmđk)
Vậy trường hợp này \(a,b\in\varnothing\)
Vậy không thể tìm được a và b tự nhiên thoả mãn các điều kiện trên.