K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

ta có x/2=x/8 và y/3=y12

        y/4=y/12 và z/5=z/15

theo tính chất của dãy tỉ số bằng nhau

x/8 = y/12 = z/15 va x+y-z =10

 x/8 = y/12 = z/15 = x+y-z/8+12-15 = 10/5 =2

=> x=8x2=16

     y=12x2=24

    z=15x2=30

1 tháng 7 2021

Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\) => \(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)

1 tháng 7 2021

\(\frac{x}{2}=\frac{y}{3}\)     \(\left(\text{*}\right)\)

\(\frac{y}{4}=\frac{z}{5}\)       \(\left(\text{*}\text{*}\right)\)

\(x+y-z=10\)     \(\left(\text{*}\text{*}\text{*}\right)\)

\(\left(\text{*}\right)\)\(\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\)

\(\left(\text{*}\text{*}\right)\)\(\Leftrightarrow5y=4z\Leftrightarrow z=\frac{5y}{4}\)  

Cả (*) và (**) thế vào (***)

\(\frac{2y}{3}+y-\frac{5y}{4}=10\Leftrightarrow\frac{5y}{12}=10\Leftrightarrow y=24\)

\(\Leftrightarrow x=16;z=30\)

Vậy ...

17 tháng 8 2016

Giải:

Ta có:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

Từ trên suy ra \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

+) \(\frac{x}{8}=2\Rightarrow x=16\)

+) \(\frac{y}{12}=2\Rightarrow y=24\)

+) \(\frac{z}{15}=2\Rightarrow z=30\)

Vậy x = 16; y = 24; z = 30

 

17 tháng 8 2016

Theo đề bài, ta có: 

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và x+y-z=10

\(\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\) và x+y-z=10

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

  • \(\frac{x}{8}=2.8=16\)
  • \(\frac{y}{12}=2.12=24\)
  • \(\frac{z}{15}=2.15=30\)

Vậy x=16,y=24,z=30.

hihi ^...^ vui ^_^

23 tháng 12 2016

Giải:
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

+) \(\frac{x}{8}=2\Rightarrow x=16\)

+) \(\frac{y}{12}=2\Rightarrow y=24\)

+) \(\frac{z}{15}=2\Rightarrow z=30\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(16;24;30\right)\)

23 tháng 12 2016

Theo đề ta cũng có thể viết: x/8 = y/12, y/12 = z/15

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y+z}{8+12-15}=\frac{10}{5}=2\)

Do đó: x/8 = 2 ⇔ x = 16

y/12 = 2 ⇔ y = 24

z/15 = 2 ⇔ z = 30

Vậy x = 16, y = 24, z = 30.

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

3 tháng 10 2016

Có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)

       \(\frac{y}{4}=\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=> \(\begin{cases}x=16\\y=24\\z=30\end{cases}\)

3 tháng 10 2016

Từ \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{5}=\frac{x+y-z}{8+12-5}=\frac{10}{15}=\frac{2}{3}\)

=> \(\begin{cases}x=\frac{16}{3}\\y=8\\z=10\end{cases}\)

30 tháng 11 2017

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) (x+y-z=10)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\hept{\begin{cases}\frac{x}{8}=2\Rightarrow x=2.8=16\\\frac{y}{12}=2\Rightarrow y=2.12=24\\\frac{z}{15}=2\Rightarrow z=2.15=30\end{cases}}\)

Vậy x=16 ; y=24 và z=30