Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{40}=k\Leftrightarrow x=15k;y=20k;z=40k\)
\(xy=1200\\ \Leftrightarrow300k^2=1200\\ \Leftrightarrow k^2=4\Leftrightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30;y=40;z=80\\x=-30;y=-40;z=-80\end{matrix}\right.\)
\(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\)
\(\Rightarrow\dfrac{x-9}{15}=\dfrac{y-12}{20}=\dfrac{z-24}{40}=k\)
\(\Rightarrow\left(15k+9\right)\left(20k+12\right)=1200\)
\(\Rightarrow3.4\left(5k+3\right)\left(5k+3\right)=1200\)
\(\Rightarrow\left(5k+3\right)\left(5k+3\right)=1200:3:4\)
\(\Rightarrow\left(5k+3\right)^2=100\)
\(\Rightarrow\left[{}\begin{matrix}5k+3=10\\5k+3=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}k=\dfrac{7}{5}\\k=\dfrac{-13}{5}\end{matrix}\right.\)
+) Với \(k=\dfrac{7}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{5}.15+9\\y=\dfrac{7}{5}.20+12\\z=\dfrac{7}{5}.40+24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=80\end{matrix}\right.\)
+) Với \(k=\dfrac{-13}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-13}{5}.15+9\\y=\dfrac{-13}{5}.20+12\\z=\dfrac{-13}{5}.40+24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-30\\y=-40\\z=-80\end{matrix}\right.\)
Vậy ................................
Chúc bạn học tốt!
\(a.\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\&xy=1200\)
\(\Leftrightarrow\dfrac{15}{20}=\dfrac{x-9}{y-12}\Leftrightarrow\dfrac{3}{4}=\dfrac{x-9}{y-12}\)
\(\Rightarrow\dfrac{9}{12}=\dfrac{x-9}{y-12}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{9}{12}=\dfrac{x-9}{y-12}=\dfrac{x-9+9}{y-12+12}=\dfrac{x}{y}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{xy}{y^2}=\dfrac{x^2}{xy}\)
Từ \(\dfrac{3}{4}=\dfrac{xy}{y^{^2}}\Rightarrow\dfrac{3}{4}=\dfrac{1200}{y^2}\Rightarrow y^2=1200.\dfrac{4}{3}=1600\)
\(\Rightarrow y=\sqrt{1600}=\pm40\)
+ TH1: \(y=40\Rightarrow x=30\)
\(\dfrac{15}{x-9}=\dfrac{40}{z-24}\Rightarrow z=80\) (tự giải pt)
+ TH2: \(y=-40\Rightarrow x=-30\)
\(\dfrac{15}{x-9}=\dfrac{40}{z-4}\Rightarrow z=-80\) (tự giải pt)
Vậy, các cặp \(\left(x;y;z\right)\) thỏa mãn là \(\left(30;40;80\right)\&\left(-30;-40;-80\right)\)
\(b.15x=-10y=6z\&xyz=30000\)
\(\Rightarrow\left\{{}\begin{matrix}15x=-10y\\-10y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-10}=\dfrac{y}{15}\\\dfrac{y}{6}=\dfrac{z}{-10}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-20}=\dfrac{y}{30}\\\dfrac{y}{30}=\dfrac{z}{-50}\end{matrix}\right.\Rightarrow\dfrac{x}{-20}=\dfrac{y}{30}=\dfrac{z}{-50}\)
Đặt \(\dfrac{x}{-20}=\dfrac{y}{30}=\dfrac{z}{-50}=k\Rightarrow x=-20k;y=30k;z=-50k\)
\(\Rightarrow xyz=30000\Rightarrow-20k.30k.\left(-50k\right)=30000\Rightarrow30000k^3=30000\)
\(\Rightarrow k^3=1\Rightarrow k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=-20\\y=30\\z=-50\end{matrix}\right.\)
\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\\ \Leftrightarrow \frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}\\ \Leftrightarrow \frac{x}{15}-\frac{3}{5}=\frac{y}{20}-\frac{3}{5}=\frac{z}{40}-\frac{3}{5}\\ \Leftrightarrow \frac{x}{15}=\frac{y}{20}=\frac{z}{40}\\\frac{x}{15}=\frac{y}{20}=\frac{z}{40}=k\\ \Rightarrow x=15k;y=20k;z=40k\\ xy=1200\\ \Leftrightarrow 15k.20k=300k^2=1200\\ \Leftrightarrow k^2=4\)
\(\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ k=2\Rightarrow\left\{{}\begin{matrix}x=15k=15.2=30\\y=20k=20.2=40\\z=40k=40.2=80\end{matrix}\right.\\ k=-2\Rightarrow\left\{{}\begin{matrix}x=15k=15.\left(-2\right)=-30\\y=20k=20.\left(-2\right)=-40\\z=40k=40.\left(-2\right)=-80\end{matrix}\right.\)
\(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\)
\(\Rightarrow\dfrac{x-9}{15}=\dfrac{y-12}{20}=\dfrac{z-24}{40}=k\)
\(\Rightarrow\left(15k+9\right)\left(20k+12\right)=1200\)
\(\Rightarrow3.4\left(5k+3\right)\left(5k+3\right)=1200\)
\(\Rightarrow\left(5k+3\right)\left(5k+3\right)=1200:3:4\)
\(\Rightarrow\left(5k+3\right)^2=100\)
\(\Rightarrow\left[{}\begin{matrix}5k+3=10\\5k+3=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}k=\dfrac{7}{5}\\k=\dfrac{-13}{5}\end{matrix}\right.\)
+) Với \(k=\dfrac{7}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{5}.15+9\\y=\dfrac{7}{5}.20+12\\z=\dfrac{7}{5}.40+24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=80\end{matrix}\right.\)
+) Với \(k=\dfrac{-13}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-13}{5}.15+9\\y=\dfrac{-13}{5}.20+12\\z=\dfrac{-13}{5}.40+24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-30\\y=-40\\z=-80\end{matrix}\right.\)
Vậy .................
\(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\)
\(\Rightarrow\dfrac{x-9}{15}=\dfrac{y-12}{20}=\dfrac{z-24}{40}=k\)
\(\Rightarrow\left(15k+9\right)\left(20k+12\right)=1200\)
\(\Rightarrow3.4\left(5k+3\right)\left(5k+3\right)=1200\)
\(\Rightarrow\left(5k+3\right)\left(5k+3\right)=1200:3:4\)
\(\Rightarrow\left(5k+3\right)^2=100\)
\(\Rightarrow\left[{}\begin{matrix}5k+3=10\\5k+3=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}k=\dfrac{7}{5}\\k=-\dfrac{13}{5}\end{matrix}\right.\)
+) Với \(k=\dfrac{7}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{5}.15+9\\y=\dfrac{7}{5}.20+12\\z=\dfrac{7}{5}.40+24\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=80\end{matrix}\right.\)
+) Với \(k=-\dfrac{13}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{13}{5}.15+9\\y=-\dfrac{13}{5}.20+12\\z=-\dfrac{13}{5}.40+24\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-30\\y=-40\\z=-80\end{matrix}\right.\)
Vậy...................................
Ta có: (dfrac{15}{x-9}=dfrac{20}{y-12}=dfrac{40}{z-24})
(Rightarrowdfrac{x-9}{15}=dfrac{y-12}{20}=dfrac{z-24}{40})
(Rightarrowdfrac{x}{15}-dfrac{3}{5}=dfrac{y}{20}-dfrac{3}{5}=dfrac{z}{40}-dfrac{3}{5})
(Rightarrowdfrac{x}{15}=dfrac{y}{20}=dfrac{z}{40})
Đặt (dfrac{x}{15}=dfrac{y}{20}=dfrac{z}{40}=k)
(Rightarrowleft[{}egin{matrix}x=15k\y=20k\z=40kend{matrix} ight.) (left(1 ight))
Thay (left(1 ight)) vào đề bài:
(15k.20k=1200)
(Rightarrow300k^2=1200)
(Rightarrow k^2=4Rightarrow k=pm2)
Khi (k=2) thì: (left[{}egin{matrix}x=15.2=30\y=20.2=40\z=40.2=80end{matrix} ight.)
Khi (k=-2) (thì:) (left[{}egin{matrix}x=15left(-2 ight)=-30\y=20left(-2 ight)=-40\z=40left(-2 ight)=-80end{matrix} ight.)
Vậy ta tìm đc 2 cặp giá trị (x,y,z) thỏa mãn đề bài:
(left[{}egin{matrix}x=30\y=40\z=80end{matrix} ight.) và (left[{}egin{matrix}x=-30\y=-40\z=-80end{matrix} ight.).
\(\frac{15}{x-9}=\frac{20}{y-12}\Rightarrow\frac{x-9}{15}=\frac{y-12}{20}\Leftrightarrow\frac{x}{15}-\frac{3}{5}=\frac{y}{20}-\frac{3}{5}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\Rightarrow\frac{x^2}{15^2}=\frac{x}{15}.\frac{y}{20}=\frac{1200}{300}=4=2^2\Rightarrow x^2=2^2.15^2=30^2\)
\(\Rightarrow x=30\text{ hoặc }x=-30\)
+TH1: x = 30
\(\frac{y}{20}=\frac{x}{15}\Rightarrow y=\frac{20.x}{15}=\frac{20.30}{15}=40\)
\(\frac{40}{z-24}=\frac{15}{30-9}=\frac{5}{7}\Rightarrow z=\frac{40.7}{5}+24=80\)
+TH2: x = -30
\(\frac{y}{20}=\frac{x}{15}=-\frac{30}{15}=-2\Rightarrow y=-2.20=-40\)
\(\frac{40}{z-24}=\frac{15}{-30-9}=-\frac{15}{3}\Rightarrow z=\frac{-3.40}{15}+24=16\)