Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a+b=c+d=-2` thay vào `a+b+c+d+e=0` ta có:
`e-4=0=>e=4`
Mà `d+e=-2=>d=-6`
Mà `c+d=-2`
`=>c=-2-d=4`
`=>c.d.e=4.4.(-6)=-96`
a/ \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\a+c=-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\2\left(a+b+c\right)=-8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\\left(a+b+c\right)=-4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=-9\\a=6\\b=-1\end{matrix}\right.\) (TM)
b/ \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)
\(\Rightarrow a^2b^2c^2=36\)
=> \(\left[{}\begin{matrix}abc=6\\abc=-6\end{matrix}\right.\)
TH1 : abc = - 6
Mà \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=3\\a=1\\b=-2\end{matrix}\right.\) (TM)
TH2 : abc = 6
Mà \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=-3\\a=-1\\b=2\end{matrix}\right.\) (TM)
a) a + b = 5 ; b + c = -10 ; c + a = -3
=> a + b + b + c + c + a = 5 -10 -3
=> 2a + 2b + 2c = -8
=> 2 . ( a + b + c ) = -8
=> a + b + c = -4
=> 5 + c = -4
=> c = -9
Khi c = -9 thì x = 6 , b = -1
Vậy : a = 6 , b = -1 , c = -9
a) -4 < x < 5
x = {-3;-2;-1;0;1;2;3;4}
Tổng là: (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4
= [(-3) + 3] + [(-2) + 2] + [(-1) + 1] + 0 + 4
= 4
b) -12 < x < 10
x = {-11;-10;...;10}
Tổng là: (-11) + (-10) + ...+ 10
= (-11) + [(-10) + 10] + ... + 0
= -11
c) |x| < 5
x = {-4;-3;-2;-1;0;1;2;3;4}
Tổng là : (-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4
= [(-4) + 4] + [(-3) + 3] + [(-2) + 2] + [(-1) + 1] + 0
= 0
Theo đề bài ta có :
\(a+b+b+c+c+a=-3-5+10\)
\(\Rightarrow\)\(2a+2b+2c=2\)
\(\Rightarrow\)\(2\left(a+b+c\right)=2\)
\(\Rightarrow\)\(a+b+c=\frac{2}{2}=1\)
Do đó :
\(a=a+b+c-\left(b+c\right)=1-\left(-5\right)=6\)
\(b=a+b+c-\left(c+a\right)=1-10=-9\)
\(c=a+b+c-\left(-3\right)=1+3=4\)
Vậy \(a=6\)\(;\)\(b=-9\)và \(c=4\)
Chúc bạn học tốt