Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|x^2+2x\right|\ge0;\left|y^2-9\right|\ge0\)
Dấu ''='' xảy ra <=> \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;x=-2\)
\(y^2-9=0\Leftrightarrow\left(y-3\right)\left(y+3\right)=0\Leftrightarrow y=\pm3\)
Từ 2x=3y=4z \(\Rightarrow\)\(\frac{x}{6}\)=\(\frac{y}{4}\)=\(\frac{z}{3}\) áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{6}\) =\(\frac{y}{4}\)=\(\frac{z}{3}\)= \(\frac{y-x+z}{4-6+3}\)=\(\frac{2013}{1}\)= 2013
\(\Rightarrow\)x=2013.6=12078
\(\Rightarrow\)y= 2013.4=8052
\(\Rightarrow\)z=2013.3=6039
Vậy: x=12078
y=8052
z=6039
HOK TỐT!
@LOANPHAN.
Ta có: x + y = x : y
=> x = x .y + y = y ( x+ 1 ) (1)
=> x : y = y (x + 1) : y = x - 1
Do đó, ta có: \(\begin{cases}x:y=x+1\\x:y=x-y\end{cases}\)
=> x - 1 = x + y
=> -1 = y
=> y = -1
Thay -1 vào (1) ta được:
x = -1(x+1)
=> x = -x . -1
=> 2x = -1
=> x = \(\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
y = 1
Bài 1:
b) Ta có: \(D=\dfrac{-5}{10}\cdot\dfrac{-4}{10}\cdot\dfrac{-3}{10}\cdot...\cdot\dfrac{3}{10}\cdot\dfrac{4}{10}\cdot\dfrac{5}{10}\)
\(=\dfrac{-5}{10}\cdot\dfrac{-4}{10}\cdot\dfrac{-3}{10}\cdot...\cdot0\cdot...\cdot\dfrac{3}{10}\cdot\dfrac{4}{10}\cdot\dfrac{5}{10}\)
=0
TA CÓ: \(B-\left(x^2+xy+y^2\right)=2x^2-xy+y^2\)
\(\Rightarrow B=\left(2x^2-xy+y^2\right)+\left(x^2+xy+y^2\right)\)
\(B=2x^2-xy+y^2+x^2+xy+y^2\)
\(B=\left(2x^2+x^2\right)+\left(y^2+y^2\right)+\left(xy-xy\right)\)
\(B=3x^2+2y^2\)
TA CÓ: \(\left(\frac{1}{2}.xy+x^2-\frac{1}{2}x^2y\right)-C=-xy+x^2y+1\)
\(\Rightarrow C=\left(\frac{1}{2}xy+x^2-\frac{1}{2}x^2y\right)-\left(-xy+x^2y+1\right)\)
\(C=\frac{1}{2}xy+x^2-\frac{1}{2}x^2y+xy-x^2y-1\)
\(C=\left(\frac{1}{2}xy+xy\right)+\left(\frac{-1}{2}x^2y-x^2y\right)+x^2-1\)
\(C=\frac{3}{2}xy+\frac{-3}{2}x^2y+x^2-1\)
mk nha
Ta có: xy + x - y -1 = 4 -1
=> x (y+1) - (y+1)=3
=> (x+1)(y+1)=3=1.3=3.1=(-1).(-3)=(-3).(-1)
Ta có bảng sau:
x+1 | 1 | 3 | -1 | -3 |
y+1 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 2 | 0 | -4 | -2 |
xy+x-y=4
=>(xy+x)-(y+1)=3
=>(y+1)(x-1)=3
Mà x;y nguyên nên (x-1);(y+1) thuộc Ư(3)={1;-1;3;-3}
Đến đây bạn lập bảng là ra
\(x.y=\frac{x}{y}\Leftrightarrow x.y:\frac{x}{y}=1\Leftrightarrow\frac{x.y.y}{x}=1\Leftrightarrow y^2=1\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}.}\)
Nếu y=1 thay vao x+y=xy ta có \(x+1=x\Leftrightarrow1=0\)(loại)
Nếu y=-1 thay vào x+y=xy ta có \(x-1=-x\Leftrightarrow x+x=1\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
vậy y=-1 ,x=1/2
từ x.y=x:y suy ra x(y-1/y)=0 =>x=0 hoặc y=1 ,y=-1
Nếu x=0 suy ra y=0 (loại)
Nếu y=1 => x+1=x(loại)
Nếu y=-1 => x-1=-x suy ra x=1/2
Vậy x=1/2 và y=-1