Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)
b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)
c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)
\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)
d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)
a)\(\dfrac{x^2}{x-1}+\dfrac{1-2x}{x-1}\)
=\(\dfrac{x^2+1-2x}{x-1}\)
=\(\dfrac{x^2-2x+1}{x-1}\)
=\(\dfrac{\left(x-1\right)^2}{x-1}\)
= x - 1
b) \(\dfrac{x}{x-3}\) + \(\dfrac{-9}{x^2-3x}\)
=\(\dfrac{x}{x-3}\)+ \(\dfrac{-9}{x\left(x-3\right)}\)
=\(\dfrac{x.x}{x\left(x-3\right)}\) + \(\dfrac{-9}{x\left(x-3\right)}\)
=\(\dfrac{x^2+3^2}{x\left(x-3\right)}\)
=\(\dfrac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}\)
=\(\dfrac{x+3}{x}\)
#Fiona
b: \(=\dfrac{7x-42-x^2+36}{x\left(x-6\right)}=\dfrac{-x^2+7x-6}{x\left(x-6\right)}=\dfrac{-x+1}{x}\)
\(\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x-3\right)}=\dfrac{x\left(x+3\right)-3\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+3x-3x-9}{x\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x}\)
a) Ta có: \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\left(\dfrac{1}{x\left(x+1\right)}+\dfrac{x+2}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\dfrac{x^2+2x+1}{x\left(x+1\right)}:\dfrac{x^2-2x+1}{x}\)
\(=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{x+1}{\left(x-1\right)^2}\)
b) Ta có: \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
\(=\dfrac{3x\left(3x+1\right)+2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}:\dfrac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)
\(=\dfrac{9x^2+3x+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}:\dfrac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)
\(=\dfrac{3x^2+5x}{\left(1-3x\right)\left(1+3x\right)}\cdot\dfrac{\left(1-3x\right)^2}{2x\left(3x+5\right)}\)
\(=\dfrac{x\left(3x+5\right)}{1+3x}\cdot\dfrac{1-3x}{2x\left(3x+5\right)}\)
\(=\dfrac{2\left(1-3x\right)}{3x+1}\)
c) Ta có: \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
\(=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)
\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{3x-9-x^2}\)
\(=\dfrac{x^2-3x+9}{x-3}\cdot\dfrac{3}{-\left(x^2-3x+9\right)}\)
\(=\dfrac{-3}{x-3}\)
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
a: \(\dfrac{4x^4y-7x^2y+3y}{-3x^2+2y}\)
\(=\dfrac{4x^4y-4x^2y-3x^2y+3y}{-\left(3x^2-2y\right)}\)
\(=\dfrac{4x^2y\left(x^2-1\right)-3y\left(x^2-1\right)}{-\left(3x^2-2y\right)}\)
\(=\dfrac{y\left(x^2-1\right)\left(4x^2-3\right)}{-\left(3x^2-2y\right)}\)
a) `(4x^4y-7x^2y+3y).(2y-3x^2y)`
`=8x^4y^2-14x^2y^2+6y^2-12x^6y^2+21x^4y^2-9x^2y^2`
`=29x^4y^2-12x^6y^2-23x^2y^2+6y^2`
b) `(x^2+3x-3/2 x^3):2x - x/2 . (1-3/2 x)`
`=(x+3-3/2 x^2):2 - (x/2 - 3/4 x^2)`
`=x/2 + 3/2 - 3/4 x^2 -x/2 +3/4 x^2`
`=3/2`
c) `(-2x^3-x-3+5x^2):(3-2x)`
`=(3-2x)(x^2-x-1) : (3-2x)`
`=x^2-x-1`
\(\frac{x^2+3x+9}{2x+10}.\frac{x+5}{x^3-27}\)
\(=\frac{x^2+3x+9}{2\left(x+5\right)}.\frac{x+5}{\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{\left(x+5\right)\left(x^2+3x+9\right)}{2\left(x+5\right)\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{1}{2\left(x-3\right)}\)
\(\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\left(\frac{x^2-36}{x^2+1}\right)\)
\(=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\left[\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\right]\)
\(=\frac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12x^2+12}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12\left(x^2+1\right).\left(x-6\right)\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(x^2+1\right)}\)
\(=\frac{12}{x}\)
a) Ta có: \(\dfrac{9-3x}{x^2+3x+4}-\dfrac{3x-23}{\left(1-x\right)\left(x+4\right)}\)
\(=\dfrac{9-3x}{x^2+3x+4}+\dfrac{3x-23}{x^2+3x-4}\)
\(=\dfrac{\left(9-3x\right)\left(x^2+3x-4\right)}{\left(x^2+3x+4\right)\left(x^2+3x-4\right)}+\dfrac{\left(3x-23\right)\left(x^2+3x+4\right)}{\left(x^2+3x-4\right)\left(x^2+3x+4\right)}\)
\(=\dfrac{9x^2+27x-36-3x^3-9x^2+12x+3x^3+9x^2+12x-23x^2-69x-92}{\left(x^2+3x-4\right)\left(x^2+3x+4\right)}\)
\(=\dfrac{-14x^2-18x-128}{\left(x^2+3x-4\right)\left(x^2+3x+4\right)}\)
b) Ta có: \(\dfrac{4-x}{x^3+2x}-\dfrac{x+5}{x^3-x^2+2x-2}\)
\(=\dfrac{4-x}{x\left(x^2+2\right)}-\dfrac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
\(=\dfrac{4-x}{x\left(x^2+2\right)}-\dfrac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\dfrac{x\left(x+5\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{4x-4-x^2+x-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{-2}{x\left(x-1\right)}\)
\(a,=\dfrac{5x+30+x^2-30}{x\left(x+6\right)}=\dfrac{x\left(x+5\right)}{x\left(x+6\right)}=\dfrac{x+5}{x+6}\\ b,=\dfrac{3x^2+4x+1-x^2+2x-1-x^2-2x+3}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}=\dfrac{x+3}{\left(x-1\right)^2}\)
\(c,=\dfrac{3x^2+2x+1+x^2-2x+1-2x^2-2x-2}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x}{x^2+x+1}\)
\(a,\left(2x-5\right)\left(5-x\right)=5\left(2x-5\right)-x\left(2x-5\right)=10x-25-2x^2+5x=15x-2x^2-25\\ b,\dfrac{1}{3x-2}-\dfrac{1}{3x+2}=\dfrac{3x+2-3x+2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{4}{\left(3x-2\right)\left(3x+2\right)}\)
\(c,\dfrac{3}{x-3}-\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}=\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x+9-6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2-6x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{x+3}\)