Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A=3^2+3^3+...+3^2007
=>3a-A=(3^2+3^3+...+3^2007)-(3^1+3^2+...+3^2006)
=>2A=3^2007-3^1=3^2007-3
=>2A+3=3^2007-3+3=3^2007=3^x
=>x=2007
\(A=3+3^2+3^3+...+3^{2006}\)
\(\Leftrightarrow3A=3\left(3+3^2+3^3+....+3^{2006}\right)\)
\(\Leftrightarrow3A=3^2+3^3+3^4+....+3^{2007}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2007}\right)-\left(3+3^2+3^3+...+3^{2006}\right)\)
\(\Leftrightarrow2A=3^{2007}-3\)
\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)
Ta có \(2A=3^{2007}-3\)
=> 2A+3=\(3^{2007}-3+3=3^{2007}\)
=> x=2007
b) \(A=3^1+3^2+3^3+...+3^{2006}\)
\(=3+3^2+\left(3^3+3^4+3^5+3^6\right)+....+\left(3^{2003}+3^{2004}+3^{2005}+3^{2006}\right)\)
\(=12+3^3\left(1+3+3^2+3^3\right)+...+3^{2003}\left(1+3+3^2+3^3\right)\)
\(=12+\left(1+3+3^2+3^3\right)\left(3^3+...+3^{2003}\right)\)
\(=12+40\left(3^3+...+3^{2003}\right)\)
\(=12+.....0=.....2\)
Vậy A có tận cùng là chữ số 2
-Ta có:1+2+3+.........+2006=(2006+1).2006:2=2013021
A=31+
a) \(A=3^1+3^2+...+3^{2006}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2007}\)
\(\Rightarrow3A-A=3^{2007}-3\)
\(\Rightarrow A=\frac{3^{2007}-3}{2}\)
b) \(2A+3=3^{2007}=3^x\Rightarrow x=2007\)
Bt lm câu đầu thoiiiii
a) A = \(3^1+3^2+3^3+...+3^{20}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+...+3^{20}+3^{21}\)
\(\Leftrightarrow3A-A=3^{21}-3\)
\(\Leftrightarrow2A=3^{21}-3\)
\(\Leftrightarrow A=\frac{3^{21}-3}{2}\)
Vậy \(A=\frac{3^{21}-3}{2}\)
b) Theo câu a ta có \(2A=3^{21}-3\)
\(\Leftrightarrow2A+3=3^{21}\) (1)
Theo bài ra ta có \(2A+3=3^x\) (2)
Từ (1) và (2) <=> \(3^x=3^{21}\)
<=> x = 21
Vậy x = 21
@@ Học tốt
Chiyuki Fujito
\(3A=3^2+3^3+3^4+...+3^{2007}\)
\(\Rightarrow3A-A=2A=3^{2007}-3^1=3.\left(3^{2006}-1\right)\)
Do đó \(A=\frac{3.\left(3^{2006}-1\right)}{2}\)
Ta có : \(2A+3=3^{2007}-3+3=3^{2007}=3^x\)
\(\Rightarrow x=2007\)
\(A=3+3^2+3^3+.......+3^{2006}\)
\(\Leftrightarrow3A=3^2+3^3+......+3^{2007}\)
\(\Leftrightarrow3A-A=3^{2007}-3\)
\(\Leftrightarrow2A=3^{2007}-3\)
\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)
\(\Leftrightarrow2A+3=2^{2007}\)
\(\Leftrightarrow2^{2007}=2^x\)
\(\Leftrightarrow x=2007\)
\(3A=3^2+3^3+....+3^{2007}\)
\(3A-A=\left(3^2+3^3+...+3^{2007}\right)-\left(3+3^2+...+3^{2006}\right)\)
\(2A=3^{2007}-3\)
\(A=\frac{3^{2007}-3}{2}\)
b)\(2A+3=3^x\)
\(2A=3^x-3\)
Mà:\(2A=3^{2007}-3\)
\(\Rightarrow x=2007\)
a)3A=3(31 + 32 + 33 + ... + 32006)
3A=32+33+...+32007
3A-A=(32+33+...+32007)-(31 + 32 + 33 + ... + 32006)
2A=32007-3
A=\(\frac{3^{2007}-3}{2}\)
b)2A+3=3x
thay 2A=32007-3 vào ta được
<=>32007-3+3=3x
<=>32007=3x
<=>x=2007
\(3A=3^2+3^3+3^4+...+3^{2007}\)
\(3A-A=2A=3^{2007}-3\)
\(A=\frac{3^{2007}-3}{2}\)
\(A=3+3^2+...+3^{2006}\\ 3A=3\left(3+3^2+...+3^{2006}\right)\\ 3A=3^2+3^3+...+3^{2007}\\ 3A-A=\left(3^2+3^3+..+3^{2007}\right)-\left(3+3^2+...+3^{2006}\right)\\ 2A=3^{2007}-3\\ 2A+3=\left(3^{2007}-3\right)+3\\ 2A+3=3^{2007}\)
Mà: `2A+3=3x=>3^2007=3x`
`=>x=3^2007:3`
`=>x=3^2006`