K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

a) \(A=3^1+3^2+...+3^{2006}\)

\(\Rightarrow3A=3^2+3^3+...+3^{2007}\)

\(\Rightarrow3A-A=3^{2007}-3\)

\(\Rightarrow A=\frac{3^{2007}-3}{2}\)

b) \(2A+3=3^{2007}=3^x\Rightarrow x=2007\)

24 tháng 2 2020

Bt lm câu đầu thoiiiii

a) A = \(3^1+3^2+3^3+...+3^{20}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+...+3^{20}+3^{21}\)

\(\Leftrightarrow3A-A=3^{21}-3\)

\(\Leftrightarrow2A=3^{21}-3\)

\(\Leftrightarrow A=\frac{3^{21}-3}{2}\)

Vậy \(A=\frac{3^{21}-3}{2}\)

b) Theo câu a ta có \(2A=3^{21}-3\)

\(\Leftrightarrow2A+3=3^{21}\)   (1)

Theo bài ra ta có \(2A+3=3^x\)  (2)

Từ (1) và (2) <=> \(3^x=3^{21}\)

<=> x = 21

Vậy x = 21

@@ Học tốt

Chiyuki Fujito

14 tháng 3

Vì 4a5b chia hết cho 45 => 4a5b chia hết cho 5 và 9

=> b=0 hoặc 5

TH1: b=0

Tổng các chữ số của 4a5b là 4+a+5+0=9+a chia hết cho 9

=>a= 0 hoặc 9

TH2: b=5

Tổng các chữ số của 4a5b là 4 + a + 5 + 5 = 14 + a chia hết cho 9

=>a=4

Vậy các cặp số (a,b) cần tìm là (0,0);(9,0);(4,5)

1 tháng 2 2019

có gạch trên đầu 4a5b ko bạn

1 tháng 2 2019

                         Giải

4a5b chia hết cho 45 nên 4a5b chia hết cho 5 và 4a5b  ( 1 ) chia hết cho 9 [ ( 5 , 9 ) = 1 ]

Từ ( 1 ) suy ra \(b\in\left\{0;5\right\}\)

* Với b = 0 thì 4a50 chia hết cho 9

\(\Rightarrow\left(4+a+5+0\right)⋮9\)

\(\Rightarrow\left(9+a\right)⋮9\)

\(\Rightarrow a\in\left\{0;9\right\}\)

* Với b = 5 thì 4a55 chia hết cho 9

\(\Rightarrow\left(4+a+5+5\right)⋮9\)

\(\Rightarrow\left(14+a\right)⋮9\)

\(\Rightarrow a=4\)

Vậy ta tìm được 3 số thõa mãn đề bài : 4050 ; 4950 ; 4455

16 tháng 12 2015

4a5b chia hết cho 5

=> b = 0 hoặc 5

4a5b chia 2 dư 1 => b = 5

4a55 chia hết cho 3

=> 4 + 5 + 5 + a chia hết cho 3

14 + a chia hết cho 3

=> a thuộc {1 ; 4 ; 7} 

Vậy các số cần tìm là: 4155 ; 4455 ; 4755 

11 tháng 11 2021

4055 chia cho 3 thì dư 2

4051 chia cho 5 thì dư 1

15 tháng 2 2016

Chia hết cho 45 => chia hết cho cả 9 và 5.
=> Vậy b = 0 hoặc 5
Xét trường hợp 1: Nếu b = 0 thì:
Tổng các chữ số = 4 + a + 5 + 0 = 9 + a chia hết cho 9
=> a = 0 hoặc 9
Xét trường hợp 2: Nếu b = 5 thì:
Tổng các chữ số = 4 + a + 5 + 5 = 14 + a chia hết cho 9
=> a = 4
Vậy các cặp số ( a;b) thỏa mãn đề bài là:
( a;b ) = ( 0;0 ) => Số 4050
( a;b ) = ( 9;0 ) => Số 4950
( a;b ) = ( 4;5 ) => Số 4455

14 tháng 2 2016

cap so la ;90 nhe ung ho minh voi

5 tháng 8 2017

a)486

b)5790 hoặc 5760 và 5730

c)4050 hoặc 4950

d)7875

18 tháng 10 2015

3A = 32 + 33 + 3+ ... +32007

=> 3A - A = 2A = 32007 - 31 = 3( 32006-1)

=>A = \(\frac{3\left(3^{2006}-1\right)}{2}\)

Ta có : 2A + 3 = 32007 + 3 - 3 

                      =  32007 = 3x

                     =>  x= 2007

 

 

 

 

b) 

A = \(\frac{1.5.6+2^3.1.5.6+4^3.1.5.6+9^3.1.5.6}{1.3.5+2^3.1.3.5+4^3.1.3.5+9^3.1.3.5}\)\(\frac{1.5.6\left(1+2^3+4^3+9^3\right)}{1.3.5\left(1+2^3+4^3+9^3\right)}\)=2

 

tôi thấy đúng

 bài 1cho tổng S =3+3^2+3^3+........+3^2007a)chứng minh S chia hết cho 13b) tìm số dư khi chia S cho 40c)so sánh 2S +3 với 82^502bài 2:a) tìm x thuộc N sao cho (2x-1)^x-4=(x+2)x-4b) tìm số A =12x3y(có gạch trên đầu)sao cho A chia hết cho 45c)tìm x,y thuộc N thỏa mãn 4^x+342=7^yd)tìm chữ số a,b sao cho a-b=3 và 3a5b(có gạch trên đầu) chia hết cho 3bài 3: a)cmr : nếu abcd(cgtđ) chia hết cho 99 thì ab(cgtđ) +cd(cgtđ) chia hết cho...
Đọc tiếp

 bài 1cho tổng S =3+3^2+3^3+........+3^2007

a)chứng minh S chia hết cho 13

b) tìm số dư khi chia S cho 40

c)so sánh 2S +3 với 82^502

bài 2:

a) tìm x thuộc N sao cho (2x-1)^x-4=(x+2)x-4

b) tìm số A =12x3y(có gạch trên đầu)sao cho A chia hết cho 45

c)tìm x,y thuộc N thỏa mãn 4^x+342=7^y

d)tìm chữ số a,b sao cho a-b=3 và 3a5b(có gạch trên đầu) chia hết cho 3

bài 3: a)cmr : nếu abcd(cgtđ) chia hết cho 99 thì ab(cgtđ) +cd(cgtđ) chia hết cho 99

b)chứng minh:B=2x10^n+25 chia hết cho 9 với n thuộc N

c) cho a,b là các chữ số , chứng minh:nếu 6a+11b chia hết cho 31 thì b0a(cgtđ) chia hết cho 31

d) cho 10^2n -1 chia hết cho 11 chứng minh 10^2n-1 +1 chia hết cho 11

bài 4:

a) tìm chữ số tận cùng của số M=9^9^9  + 2007^2008

b) từ các số 0;1;2;3;4;5;6 viết được bao nhiêu số có 5 chữ số khác nhau và số đó chia hết cho 5

    GIẢI HỘ 1 SỐ BÀI CX ĐC KO CẦN GIẢI HẾT NHƯNG NHỚ GIẢI CHI TIẾT VÀ ĐÚNG NHA ^^

3
28 tháng 10 2015

(3+32+33)+(34+35+36)+...+(32005+32006+32007)

=3(1+3+32)34(1+3+32)+...+32005(1+3+32)

=3.13+3^4.13+...+3^2005.13

=13(3+34+...+32005)

tick mk nha

30 tháng 9 2016

Ta có 3.S=3.(3+3^2+3^3+........+3^2007)

7 tháng 5 2016

1. Ta có:

3A = 3^2 + 3^3+3^4+...+3^101

=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)

<=> 2A= 3^101-3

=> 2A +3 = 3^101

Mà 2A+3=3^n

=> 3^101 = 3^n => n=101

7 tháng 5 2016

2. M=3+32+33+34+...+3100

=>3M=32+33+34+35+...+3101

=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé) 

=>   M=\(\frac{3^{101}-3}{2}\)

a) Ta co : 3101=(34)25 .3=8125.3

Bạn học đồng dư thức rồi thì xem:

  Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)

=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8

=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)

Ma M=3101-3 chia hết cho 3                              (2)

Từ (1) và (2) => M chia hết cho 12

b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)

=> 3101-3 +3 =3n

=> 3101=3n=> n = 101

     

                                   

26 tháng 10 2021

\(A=3+3^2+3^3+...+3^{99}+3^{100}\)

\(3A=3^2+3^3+3^4+...+3^{100}+3^{101}\)

\(3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)-\left(3+3^2+3^3+...+3^{99}+3^{100}\right)\)

\(2A=3^{101}-3\)

\(A=\dfrac{3^{101}-3}{2}\)