K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2022

a.Ta có: AB=AC ( gt )

=> Tam giác ABC cân tại A

Mà AM là đường trung tuyến => AM cũng là đường cao

=> AM vuông góc với BC

b. Ta có: BH = BC : 2 ( AM là đường trung tuyến )

=> BH = 32 : 2 = 16cm

Áp dụng định lý pitago vào tam giác vuông ABM, có:

\(AB^2=AM^2+BM^2\)

\(\Rightarrow AM=\sqrt{AB^2-BM^2}=\sqrt{34^2-16^2}=\sqrt{900}=30cm\)

c.Xét tam giác vuông BMF và tam giác vuông CME, có:

góc B = góc C ( ABC cân )

BM = CM ( gt )

Vậy tam giác vuông BMF = tam giác vuông CME ( cạnh huyền. góc nhọn)

=>  BF = CE ( 2 cạnh tương ứng )

=> AF = AE ( AB = AC; BF = CE )

=> Tam giác AEF cân tại A

=> AM vuông với EF (1)

Mà AM cũng vuông với BC (2)

Từ (1) và (2) suy ra EF//BC

d. ta có: BM = CM ( gt ) (3)

Mà trong tam giác vuông MCE có ME là cạnh huyền 

=> \(ME>MC\) (4)

Từ (3) và (4) suy ra \(ME>MB\)

a: Ta có:ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: BM=CM=BC/2=16cm

=>AM=30(cm)

c: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có

AM chung

\(\widehat{FAM}=\widehat{EAM}\)

Do đó: ΔAFM=ΔAEM

Suy ra: AF=AE

Xét ΔABC có AF/AB=AE/AC

nên FE//BC

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF và ME=MF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: IN//EM

=>NI/ME=BN/BM

=>NI/MF=BN/CM

=>NI/BN=MF/CM

FM//NK

=>MF/NK=CM/CN

=>MF/CM=NK/CN

=>NK/CN=NI/BN=(NI+NK)/BC ko đổi

12 tháng 6

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF và ME=MF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: IN//EM

=>NI/ME=BN/BM

=>NI/MF=BN/CM

=>NI/BN=MF/CM

FM//NK

=>MF/NK=CM/CN

=>MF/CM=NK/CN

=>NK/CN=NI/BN=(NI+NK)/BC ko đổi

20 tháng 2 2021

image

Chúc bạn học tốt

a) Xét ΔAMB vuông tại M và ΔAMC vuông tại M có 

AB=AC(ΔABC cân tại A)

AM chung

Do đó: ΔAMB=ΔAMC(cạnh huyền-cạnh góc vuông)

Suy ra: MB=MC(hai cạnh tương ứng)

b) Ta có: ΔAMB=ΔAMC(cmt)

nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

c) Xét ΔDMB vuông tại D và ΔEMC vuông tại E có 

MB=MC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDMB=ΔEMC(cạnh huyền-góc nhọn)

Suy ra: DM=EM(hai cạnh tương ứng)

Xét ΔMDE có MD=ME(cmt)

nên ΔMDE cân tại M(Định nghĩa tam giác cân)

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

=>ΔABM=ΔACM

b: Xét ΔADM vuông tại D và ΔAEM vuông tại E có

AM chung

góc DAM=góc EAM

=>ΔADM=ΔAEM

=>MD=ME

=>ΔMED cân tại M

c: Xét ΔCAB có

M là trung điểm của CB

MF//AB

=>F là trung điểm của AC

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF và ME=MF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: IN//EM

=>NI/ME=BN/BM

=>NI/MF=BN/CM

=>NI/BN=MF/CM

FM//NK

=>MF/NK=CM/CN

=>MF/CM=NK/CN

=>NK/CN=NI/BN=(NI+NK)/BC ko đổi

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF và ME=MF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC