Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DDK : \(x\ge1\)
\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
\(\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)
\(\Rightarrow x-1=3x-2+5x-2+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)
\(\Leftrightarrow x-1-3x+2-5x+2=2\sqrt{15x^2-3x-10x+2}\)
\(\Leftrightarrow3-7x=2\sqrt{15x^2-13x+2}\)
\(\Rightarrow9-42x+49x^2=4\left(15x^2-13x+2\right)\)
\(\Leftrightarrow9-42x+49x^2=60x^2-52x+8\)
\(\Leftrightarrow11x^2-10x-1=0\)
\(\Leftrightarrow11x^2-11x+x-1=0\)
\(\Leftrightarrow\left(11x+1\right)\left(x-1\right)=0\)
Giải nốt nha .
1: ĐKXĐ: -2/2x-2>=0
=>2x-2<0
=>x<1
2: ĐKXĐ: 2/3x-1>=0
=>3x-1>0
=>x>1/3
3: ĐKXĐ: 2x-2/(-2)>=0
=>2x-2<=0
=>x<=1
4: ĐKXĐ: (3x-2)/5>=0
=>3x-2>=0
=>x>=2/3
5: ĐKXĐ: (x-2)/(x+3)>=0
=>x>=2 hoặc x<-3
ta có đề bài <=>
\(\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\)
<=> \(\left|x-3\right|+\left|x+5\right|=8\)
<=>\(\left|3-x\right|+\left|x+5\right|=8\)
Áp dụng tính chât dấu giá trị tuyệt đối ta có
\(\left|3-x\right|+\left|x+5\right|>=\left|3-x+x+5\right|=8\)
dấu = xảy ra <=> \(\left(3-x\right)\left(x+5\right)>=0\)
đến đây bạn tự giaỉ dấu = nhé
a)
ĐKĐB: \(\left\{\begin{matrix} 2x-1\geq 0\\ x^2+2x-5\geq 0\end{matrix}\right.\)
PT \(\Leftrightarrow 2x-1=x^2+2x-5\) (bình phương 2 vế)
\(\Leftrightarrow x^2-4=0\Leftrightarrow (x-2)(x+2)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-2\end{matrix}\right.\)
Thử lại vào ĐKĐB suy ra $x=2$ là nghiệm duy nhất.
b)
ĐKĐB: \( \left\{\begin{matrix} x(x^3-3x+1)\geq 0\\ x(x^3-x)\geq 0\end{matrix}\right.\)
PT \(\Leftrightarrow x(x^3-3x+1)=x(x^3-x)\) (bình phương)
\(\Leftrightarrow x(x^3-3x+1-x^3+x)=0\)
\(\Leftrightarrow x(1-2x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1}{2}\end{matrix}\right.\)
Thử lại vào ĐKĐB thấy $x=0$ là nghiệm duy nhất
e)
ĐKXĐ: \(x\geq \frac{5}{3}\)
PT \(\Rightarrow (\sqrt{x+2}-\sqrt{2x-3})^2=3x-5\) (bình phương 2 vế)
\(\Leftrightarrow 3x-1-2\sqrt{(x+2)(2x-3)}=3x-5\)
\(\Leftrightarrow 2=\sqrt{(x+2)(2x-3)}\)
\(\Leftrightarrow 4=(x+2)(2x-3)\)
\(\Leftrightarrow 2x^2+x-10=0\)
\(\Leftrightarrow (x-2)(2x+5)=0\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-5}{2}\end{matrix}\right.\)
Kết hợp với ĐKXĐ suy ra $x=2$
f) Bạn xem lại đề.
a, \(\sqrt{x^2+2x-5}\)= \(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))
\(\Leftrightarrow x^2+2x-5=2x-1\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)
#mã mã#
b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)
\(\Leftrightarrow x\left(x^3-3x+1\right)\)= \(x\left(x^3-1\right)\)
\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0
\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0
\(\Leftrightarrow\)x( 2-3x ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)
vậy pt vô nghiệm
#mã mã#
a) Ta có: \(\left(x-\sqrt{2}\right)+3\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)+3\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(1+3x+3\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\3x+3\sqrt{2}+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\3x=-3\sqrt{2}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=\dfrac{-3\sqrt{2}-1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{\sqrt{2};\dfrac{-3\sqrt{2}-1}{3}\right\}\)
b) Ta có: \(x^2-5=\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)-\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}-2x+\sqrt{5}\right)=0\)
\(\Leftrightarrow-x\left(x+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x+\sqrt{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\sqrt{5}\end{matrix}\right.\)
Vậy: \(S=\left\{0;-\sqrt{5}\right\}\)
\(-2\left(\sqrt{1+x}+\sqrt{1-x}\right)+7=\sqrt{\left(5-2x\right)\left(5+2x\right)}-2\sqrt{1-x^2}\)
ĐKCĐ: \(-1\le x\le1\)
\(\Leftrightarrow2\left(\sqrt{\left(1-x\right)}-1\right)\left(\sqrt{1+x}-1\right)+5-\sqrt{\left(5-2x\right)\left(5+2x\right)}=0\)
\(\Leftrightarrow2x^2\left[\frac{2}{5+\sqrt{\left(5-2x\right)\left(5+2x\right)}}-\frac{1}{\left(\sqrt{1-x}+1\right)\left(\sqrt{1+x}+1\right)}\right]\)
Đặt: \(A=\frac{2}{5+\sqrt{\left(5-2x\right)\left(5+2x\right)}}-\frac{1}{\left(\sqrt{1-x}+1\right)\left(\sqrt{1+x}+1\right)}\)
Có: \(A\le\frac{2}{5+\sqrt{\left(5-2\right)\left(5-2\right)}}-\frac{1}{\sqrt{1-x^2}+1+\sqrt{1-x}+\sqrt{1+x}}< \frac{2}{5+3}-\frac{1}{1+1+2}=0\)
\(\Rightarrow x=0\) là nghiệm của pt