K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

đề bài là zì zậy bạn?
 

4 tháng 10 2016

câu hỏi này chỉ là đùa thôi 

haha

16 tháng 5 2017

ab x 6 = 1ab

b x 6 = b.Vậy b = 0

a x 6 = 1a.Vậy a = 2

Vậy:20 x 6 = 120

16 tháng 5 2017

ab x 6 =1ab

b x 6 = b. Vậy b = 0

a x 6 = 1a. Vậy a = 2

Vậy 20 x 6 = 120

Ai k cho mình thì mình k lại!

26 tháng 7 2020

chứng minh \(\frac{3}{2}\ge\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\)

ta có \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{2x}{1+x^2}\le1\)

\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\Leftrightarrow\frac{2y}{1+y^2}\le1\)

\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\Leftrightarrow\frac{2z}{1+z^2}\le1\)

\(\Rightarrow\frac{2x}{1+x^2}+\frac{2y}{1+y^2}+\frac{2x}{1+z^2}\le3\Leftrightarrow\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\)

chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{2}\)

áp dụng bất đẳng thức Cauchy ta có: 

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge3\sqrt[3]{\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=\frac{3}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)

ta lại có \(\frac{\left(1+x\right)\left(1+y\right)\left(1+z\right)}{3}\ge\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

vậy \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{\frac{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}{3}}=\frac{3}{2}\)

kết hợp ta có \(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)

18 tháng 8 2018

đây là toàn lp 3 hả bn

18 tháng 8 2018

đây ko phải toán lớp 3

24 tháng 12 2020

???????????

22 tháng 12 2021

có 26 k đi

22 tháng 12 2021

có 26 nha

Bởi mảnh đất có chiều rộng bằng chiều dài nên mảnh đất là hình vuông và chiều dài mỗi cạnh là: 24m

Chu vi mảnh vườn là:

\(24\cdot4=96\left(m\right)\)

5 tháng 3 2022

dễmà ai cũng biết làm cái này kì 1 rồi bây giờ là kì 2 cơ mà