K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

đề bài là zì zậy bạn?
 

4 tháng 10 2016

câu hỏi này chỉ là đùa thôi 

haha

16 tháng 5 2017

ab x 6 = 1ab

b x 6 = b.Vậy b = 0

a x 6 = 1a.Vậy a = 2

Vậy:20 x 6 = 120

16 tháng 5 2017

ab x 6 =1ab

b x 6 = b. Vậy b = 0

a x 6 = 1a. Vậy a = 2

Vậy 20 x 6 = 120

Ai k cho mình thì mình k lại!

14 tháng 4 2016

666-111=555

14 tháng 4 2016

555-20=535

4 tháng 10 2018

không ra

4 tháng 10 2018

gi ma dai dong the

26 tháng 7 2020

chứng minh \(\frac{3}{2}\ge\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\)

ta có \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{2x}{1+x^2}\le1\)

\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\Leftrightarrow\frac{2y}{1+y^2}\le1\)

\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\Leftrightarrow\frac{2z}{1+z^2}\le1\)

\(\Rightarrow\frac{2x}{1+x^2}+\frac{2y}{1+y^2}+\frac{2x}{1+z^2}\le3\Leftrightarrow\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\)

chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{2}\)

áp dụng bất đẳng thức Cauchy ta có: 

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge3\sqrt[3]{\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=\frac{3}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)

ta lại có \(\frac{\left(1+x\right)\left(1+y\right)\left(1+z\right)}{3}\ge\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

vậy \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{\frac{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}{3}}=\frac{3}{2}\)

kết hợp ta có \(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)

19 tháng 8 2017

404 < 440        200 + 5 < 250

765 > 756       440 - 40 > 399

899 < 900       500 + 50 + 5 = 555

18 tháng 7 2016

\(2+3+8+555=568\)

\(4+5925+54251-555+56532=116157\)

\(565264+546512=1111776\)

\(51665+854785+5448559=6355009\)

18 tháng 7 2016

Kết quả: 7583516.